• 1

			May 10, 1999
La Cultria Corporarie Centre Traville Impaici Study Study			Prepared by: Endo Engineering

May 10, 1999

Mr. Marvin Roos Mainiero Smith & Associates, Inc. 777 E. Tahquitz Canyon Way - Suite 301 Palm Springs, CA 92262

SUBJECT: La Quinta Corporate Centre - Traffic Impact Study

Dear Mr. Roos;

Endo Engineering is pleased to submit this analysis of the circulation impacts associated with the La Quinta Corporate Centre in the City of La Quinta. The project site is located north of Highway 111, between Adams Street and Dune Palms Road. The proposed development includes: multi-tenant industrial/office uses, retail uses, offices, industrial lots, a fitness club, a bank, a gas station and a Recreational Vehicle and self storage area.

This study follows the format and methodology specified by Riverside County in their November 1991 Traffic Impact Study Report Preparation Guide. It details in graphic and narrative form: (1) existing circulation conditions; (2) conditions with and without project buildout in the year 2010; (3) areawide buildout conditions with and without the project in the year 2020; and (4) recommended mitigation measures. We trust that the information provided herein will be of value to City staff in their review of the impacts and conditions of approval associated with the project. Should questions or comments develop regarding the findings and recommendations within this report, please do not hesitate to contact our offices at (949) 362-0020.

Cordially,

ENDO ENGINEERING

Picki Lee Endo

Vicki Lee Endo Registered Professional Traffic Engineer TR 1161

TRAFFIC IMPACT STUDY

LA QUINTA CORPORATE CENTRE

NORTH OF HIGHWAY 111
BETWEEN ADAMS STREET AND DUNE PALMS ROAD

CITY OF LA QUINTA

May 10, 1999

Prepared For:

MAINIERO SMITH & ASSOCIATES INC. 777 E. Tahquitz Canyon Way, Suite 301 Palm Springs, CA 92262 (760) 320-9811

Prepared By:

ENDO ENGINEERING 28811 Woodcock Drive Laguna Niguel, CA 92677 (949) 362-0020

Table of Contents

Section	Title	Page
I	INTRODUCTION AND SUMMARY A. Purpose and Objectives B. Executive Summary	I-1
II	PROPOSED DEVELOPMENT	II-1
Ш	AREA CONDITIONS	III-1
IV	PROJECTED TRAFFIC. A. Site Traffic B. Through Traffic C. Total Traffic	IV-1
V	TRAFFIC ANALYSIS A. Site Access B. Capacity and Level of Service and Improvement Analysis	V-1
VI	FINDINGS AND CONCLUSIONS A. Site Accessibility B. Traffic Impacts C. Off-Site Improvements Needed D. Compliance with General Plan Circulation Policies E. CMP System Improvements Needed	VI-1
VII	RECOMMENDATIONS	VII-1
	 APPENDICES 1. 1999 Peak Hour Traffic Count Data 2. HCM Unsignalized Intersection Methodology and Worksh 3. Traffic Signal Warrants and Worksheets 4. HCM Signalized Intersection Methodology and Workshee 5. Consistency With General Plan Circulation Policies 	

List of Figures

Number	Title Following Page
II-1	Site Location II-1
II-2	Site Development Plan II-1
III-1	Existing Transportation System III-1
III-2	Anticipated Transportation System (City of La Quinta) III-2
III-3	Typical Street Cross-Sections (City of La Quinta) III-2
III-4	1999 Peak Hour Traffic Volumes (Peak Season) III-2
IV-1	Directional Distribution of Daily Site Traffic
IV-2	Directional Distribution of Peak Hour Site Traffic
IV-3	Peak Hour Site Traffic Volumes
IV-4	Estimated Peak Hour Non-Site Traffic (Year 2010) IV-2
IV-5	Estimated Peak Hour Non-Site Traffic (Year 2020) IV-2
IV-6	Estimated Peak Hour Total Future Traffic (Year 2010) IV-3
IV-7	Estimated Peak Hour Total Future Traffic (Year 2020) IV-3
VI-1	Existing Lane Geometrics
VI-2	Required Year 2010 Lane GeometricsVI-2
VI-3	Required Year 2020 Lane Geometrics

List of Tables

Number	Title	Page
IV-1	Estimated Site Traffic Generation	IV-1
IV-2	Daily Traffic Volumes by Scenario	IV-3
V-1	Existing Unsignalized Intersection Peak Hour Delay and LOS Summary	V-3
V-2	Existing Signalized Intersection Peak Hour Delay and LOS Summary	V-5
V-3	Year 2010 Unsignalized Intersection Peak Hour Delay and LOS Summary	V-7
V-4	Year 2010 Signalized Intersection Peak Hour Delay and LOS Summary	V-8
V-5	Year 2020 Unsignalized Intersection Peak Hour Delay and LOS Summary	V-10
V-6	Year 2020 Signalized Intersection Peak Hour Delay and LOS Summary	V-11
V-7	Level of Service Summary	V-13
	e e	

I. INTRODUCTION AND SUMMARY

I. A PURPOSE AND OBJECTIVES

The purpose of this report is to provide in graphic and narrative form: (1) existing roadway and traffic conditions; (2) probable traffic changes related to the proposed project; and (3) mitigation measures required to meet City of La Quinta minimum level of service requirements and traffic engineering design standards.

The scope of the study complies with Riverside County specifications as set forth in the November 1991 *Traffic Impact Study Report Preparation Guide* developed by the Transportation Planning and Development Review Division. The analysis herein employs the 1994 update to the *Highway Capacity Manual* (HCM) to analyze levels of service via the Highway Capacity Software (HCS) package prepared under FHWA sponsorship and maintained by the McTrans Center at the University of Florida Transportation Research Center.

I. B EXECUTIVE SUMMARY

Site Location and Study Area

The site is located within the City of La Quinta, north of Highway 111, and south of the Whitewater River Channel, east of Adams Street, and west of Dune Palms Road. Four key intersections were analyzed including:

Adams Street @

- Adams Hotel Access

Highway 111 @

- Adams Street
- Main Site Access
- Dune Palms Road

Development Description

The proposed La Quinta Corporate Centre is mixed use development which includes: 91,600 square feet of business park uses, 79,300 square feet of commercial uses, 235,000 square feet of office uses, a 7,000 square-foot restaurant, a 6,500 square-foot bank, and 30,000 square-foot fitness center, a 15 fueling position service station, 10.6 acres of industrial park uses, and 3.61 acres of self-storage. Build-out of the project site is anticipated to occur by the year 2010.

Principal Findings

The City of La Quinta General Plan circulation policies require a minimum Level of Service "D". All of the key intersections will operate at acceptable levels of service (LOS D or better), under all scenarios based upon the minimum required lane configurations shown in Figure VI-1, VI-2 and VI-3. The intersection of the proposed industrial street and Dune Palms Road will require signalization to provide acceptable levels of service under citywide build-out plus project conditions.

Existing Conditions

All three of the key intersections are currently operating at acceptable levels of service (LOS D or better) during the peak travel hours. The one unsignalized key intersection does not require signalization to provide acceptable levels of service.

Year 2010 Conditions

All of the key intersections will provide acceptable levels of service (LOS D or better) in the year 2010 with or without site traffic. No intersection improvements (other than those proposed with the project) will be required to provide acceptable levels of service.

Year 2020 Conditions

All of the key intersections will provide acceptable levels of service (LOS D or better) in the year 2020 with or without site traffic. The year 2020 scenarios assumed that Highway 111, Adams Street, and Dune Palms Road were fully improved to their master planned cross-sections.

Conclusions

All of the key intersections will operate at acceptable levels of service with the proposed project. To provide acceptable levels of service, dual left-turn lanes will be required along the northbound and southbound approach of Adams Street and Dune Palms Road to Highway 111. Some flaring may be required to accommodate the dual-left turn lanes. The La Quinta Auto Centre will require dual westbound left-turn lanes on westbound Highway 111 at the main site access intersection to provide acceptable levels of service under citywide build-out conditions.

Recommendations

Areawide improvements to the circulation network will be required with or without the project to accommodate year 2020 peak hour traffic demands. The following mitigation measures are recommended to reduce potential circulation impacts associated with the proposed project and site access.

- 1. The proposed internal circulation layout shall be subject to the review and approval of the City Traffic Engineer during the development review process to insure compliance with City of La Quinta minimum access and design standards.
- 2. Adequate off-street parking (including handicapped parking) shall be provided per the parking requirements of the Municipal Code.
- 3. All internal streets shall be fully constructed to their ultimate cross-section as adjacent on-site development occurs.
- 4. Sidewalks and streetlights shall be installed on-site as specified by the City.
- 5. Clear, unobstructed sight distance shall be provided at all internal street intersections on-site.
- 6. A STOP sign will control exiting site traffic and clear unobstructed sight distances shall be provided at all site driveways.

- 7. The project proponent shall provide (at a minimum) the lane geometrics shown in Figures VI-2 and VI-3 at the site access locations in conjunction with adjacent development.
- 8. The project proponent shall install a traffic signal when warranted at the intersection of the proposed industrial street and Dune Palms Road.
- 9. The project proponent may be required to participate in a traffic mitigation fee program which would ensure that a "fair-share" contribution is made to future roadway improvements within the project vicinity.

II. PROPOSED DEVELOPMENT

II. A SUMMARY OF DEVELOPMENT

Project Location

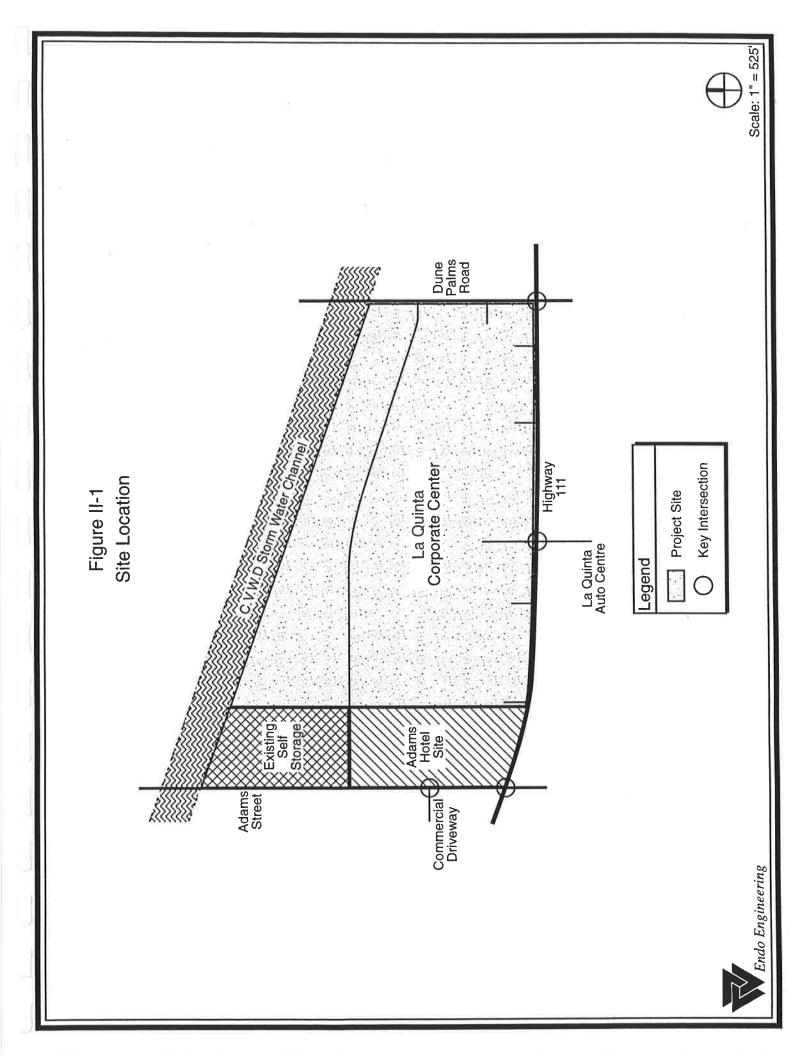
The site is located within the City of La Quinta, north of Highway 111, and south of the Whitewater River Channel, east of Adams Street, and west of Dune Palms Road. Regional access is primarily provided by Highway 111. Figure II-1 depicts the location of the project site, the study area and the key intersections analyzed herein.

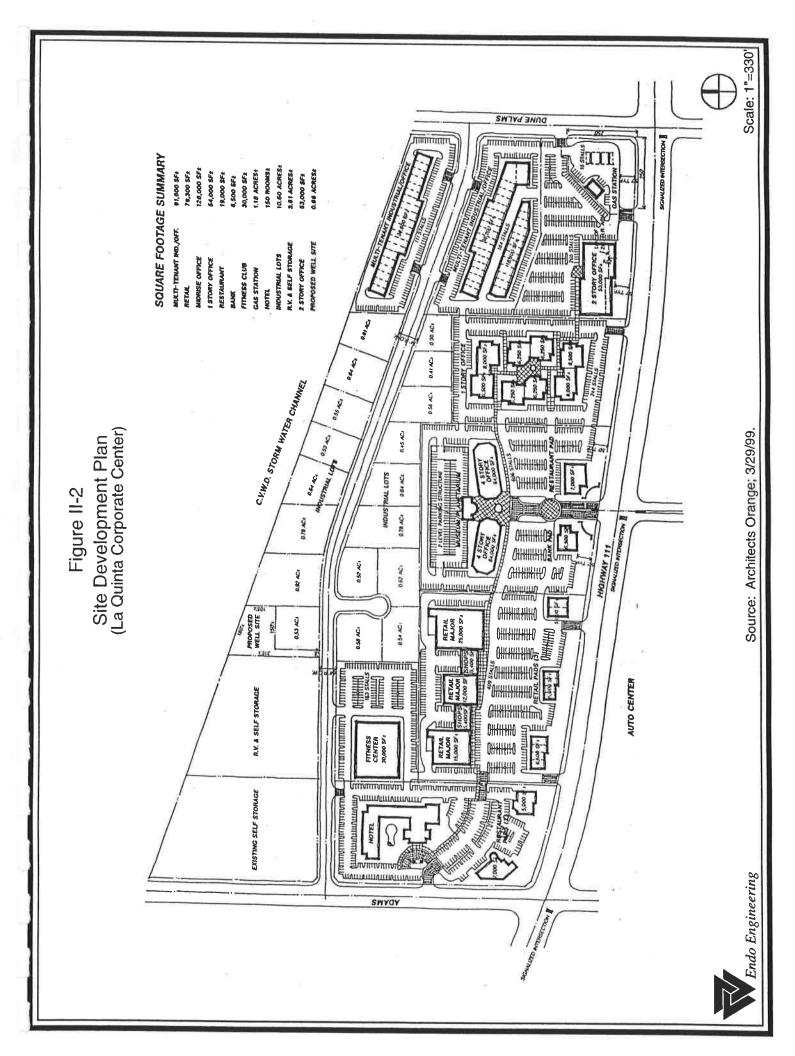
Figure II-1 illustrates the study area and the 4 key intersections evaluated. The key intersections include:

Adams Street @

- Adams Hotel Access

Highway 111 @


- Adams Street
- Main Site Access
- Dune Palms Road


Project Land Use and Circulation Plan

The proposed La Quinta Corporate Centre is mixed use development which includes: 91,600 square feet of business park uses, 79,300 square feet of commercial uses, 235,000 square feet of office uses, a 7,000 square-foot restaurant, a 6,500 square-foot bank, and 30,000 square-foot fitness center, a 15 fueling position service station, 10.6 acres of industrial park uses, and 3.61 acres of self-storage. Build-out of the project site is anticipated to occur by the year 2010.

Zoning and Land Use Category

The proposed project is generally consistent with the current General Plan and Zoning designations on-site.

III. AREA CONDITIONS

III. A STUDY AREA

The study area was developed through coordination with City of La Quinta staff. As shown in Figure III-1, it includes the following 4 key intersections:

Adams Street @

- Adams Hotel Access

Highway 111 @

- Adams Street
- Main Site Access
- Dune Palms Road

The Adams Hotel access is proposed directly opposite a driveway to the Wal-Mart commercial project located west of Adams Street. The main site access is a signalized intersection that will be developed in conjunction the La Quinta Auto Centre, south of Highway 111.

III. B STUDY AREA LAND USE

The site is located within the City of La Quinta, north of Highway 111, and south of the Whitewater River Channel, east of Adams Street, and west of Dune Palms Road. The 57± acre site is currently vacant.

South of Highway 111, opposite the proposed project, is the site of the future La Quinta Auto Centre. The La Quinta Auto Centre will include 275,000 square feet of auto dealership facilities and approximately 400,000 square feet of mixed-use regional commercial uses, and is scheduled for completion by the year 2005. The land east of Dune Palms Road is currently vacant.

North of Highway 111 and west of Adams Street is the Wal-Mart commercial center. Between the project site and Adams Street, is the proposed Adams Hotel project which includes a 160-room hotel and 12,000 square feet of restaurant uses.

III. C SITE ACCESSIBILITY

Area Roadway System

Regional access is currently provided by State Highway 111. Local access is provided by Adams Street and Dune Palms Road. Direct site access is provided by four driveways and and one intersection on Highway 111, one driveway and one intersection on Adams Street, and one driveway and one intersection along Dune Palms Road. The four driveways on Highway 111 and the one driveway on Dune Palms Road will be restricted to right-turn movements.

Figure III-1 depicts the existing transportation system in the study area. Traffic control devices and mid-block lane geometrics are shown, based upon a field survey made in March of 1999.

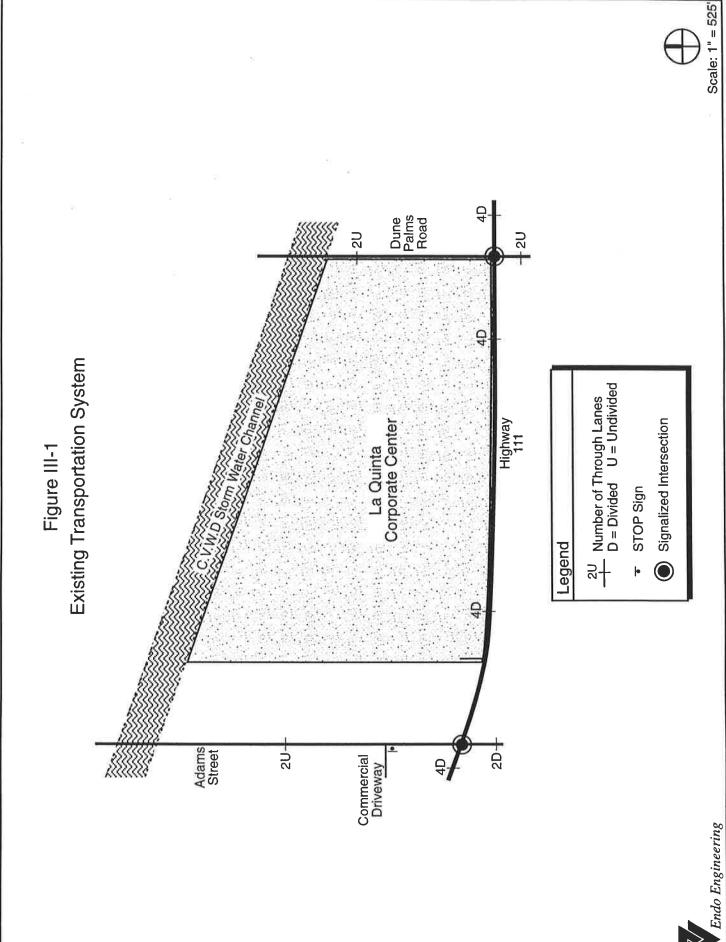


Figure III-2 depicts the future transportation system in the project vicinity, based upon the Circulation Element of the La Quinta General Plan. Figure III-3 provides typical street cross-sections for master planned roadways in La Quinta, including right-of-way requirements.

Highway 111 is shown in the La Quinta Circulation Element as a special class of Major Arterial, with a 172-foot right-of-way established by Caltrans. Adjacent to the project site, Highway 111 has a half-width with a 70-foot right-of-way, a 44-foot roadbed, a 14-foot median, and a 12-foot parkway.¹

Adams Street is shown as a Secondary Arterial (88-foot right-of-way and a 64-foot roadbed) north of Highway 111, and as a Primary Arterial south of Highway 111. Dune Palms Road is shown as a Secondary Arterial north of Highway 111 and a Primary Arterial south of Highway 111.

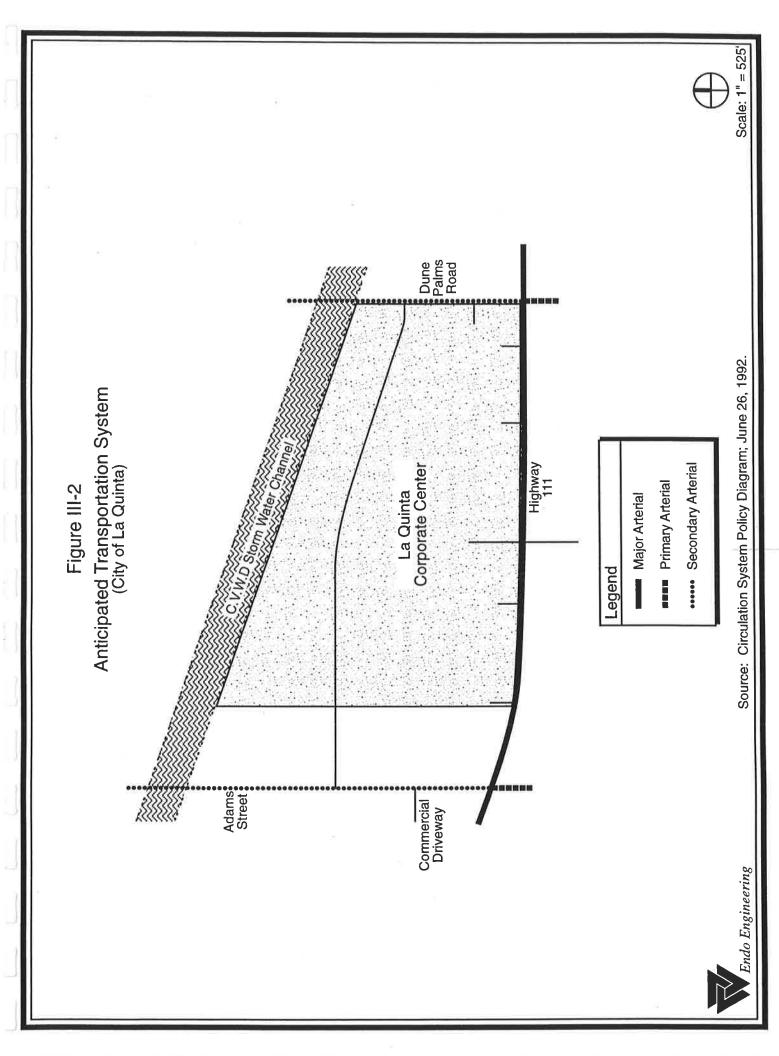
Traffic Volumes

To analyze the peak hour conditions at the three existing key intersections, morning and evening peak hour traffic counts were made in February of 1999 at the key intersections by Counts Unlimited, Inc. Two-hour manual traffic counts were made between 7:00 AM and 9:00 AM and between 4:00 PM and 6:00 PM. The turning movement count data from the morning and evening peak hours at the key intersections is included in Appendix 1.

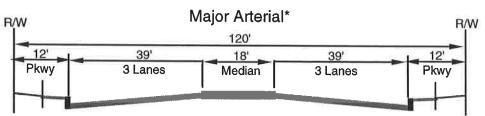
Figure III-4 depicts the current peak season peak hour traffic volumes on roadway links in the study area. Current daily peak season volumes were developed by assuming that 8.5% of the daily traffic volumes occur during the evening peak hour, and have been included in the summary of daily traffic volumes shown in Table IV-2.

Traffic Signal Warrants

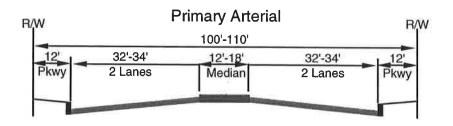
The one existing key unsignalized intersection is Adams Street @ (future) Adams Hotel Access. With the existing traffic volumes from the Wal-Mart shopping center driveway located opposite the proposed Adams Hotel Access, this intersection is well below peak hour traffic signal warrants. Refer to Appendix 3 for Daily Planning Level Warrants, peak hour warrants, and worksheets.

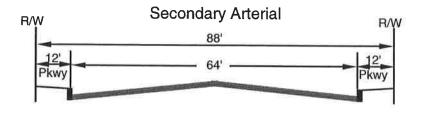

Transit Service

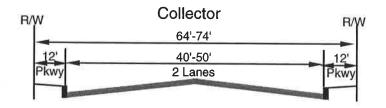
Transit service is provided through the study area by the SunLine Transit Agency. Bus route 846 is located along Highway 111 adjacent to the project site.

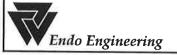

Existing Relevant TSM Programs

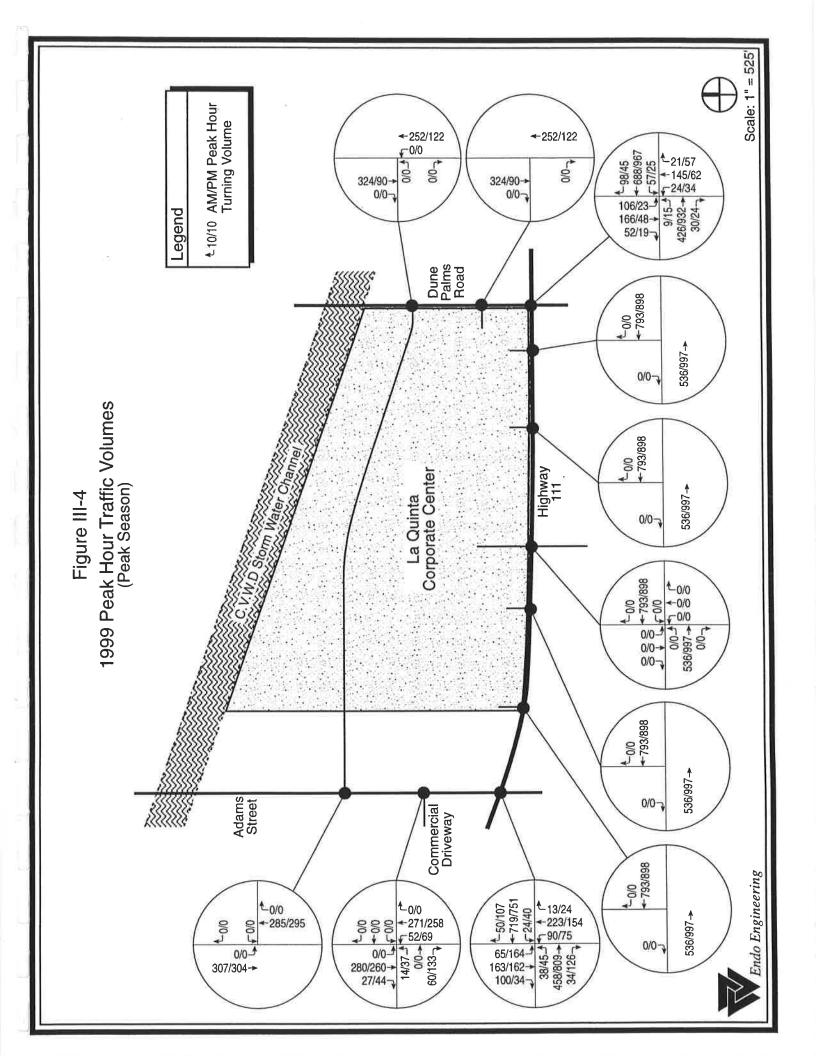
There are no Transportation System Management plans in effect in the study area at present. However, the City of La Quinta has adopted a Transportation Demand Management Ordinance (Municipal Code Chapter 9.162).


^{1.} Source: Mr. Steve Speer, City of La Quinta.




Figure III-3 Typical Street Cross-Sections (La Quinta)




* State Highway 111 constitutes a special class of Major Arterial with a 172' right-of-way established by Caltrans.

IV. A SITE TRAFFIC

Project-Related Trip Generation

The potential trip generation from development on-site was determined from the Institute of Transportation Engineers 1997 publication entitled *Trip Generation* (Sixth Edition). The trip generation forecast for the proposed project (site traffic generation) is shown in Table IV-1 summarized by land use.

Table IV-1
Estimated Site Traffic Generation^a

Planning Area/Land Use (ITE Code)	Land Use Quantity	AM I In	Peak Ho Out	our Total	PM In	Peak I Out	Hour Total	Daily 2-Way
Proposed Project								
Business Park (770)	91.6 TSF	110	21	131	27	91	118	1,170
Commercial (820)	79.3 TSF	85	54	139	259	280	539	5,870
General Office (710)	235 TSF	323	44	367	60	291	351	2,590
Restaurant-HTO (832)	7 TSF	34	31	65	46	30	76	910
Bank W/O Drive Thru (SD)	6.5 TSF	27	12	39	31	47	78	980
Racquetball/Health Club(492)		26	18	44	33	22	55	510
Service Station (846)	15 Pumps	81	78	159	99	99	198	2,290
Industrial Park (130)	10.6 Acres	109	22	131	30	114	144	1,100
Mini Warehouse (151)	3.61 Acres	5	5	10	8	7	15	150
Total		800	285	1,085	593	981	1,574	15,570
Cumulative Project Hotel (310) Restaurant-HTO (832)	160 Room 12 TSF	45 58	29 53	74 111	43 78	38 52	81 130	1,060 1,560
Total		103	82	185	121	90	211	2,620

a. TSF=Thousand Square Feet; Pumps=Vehicle Fueling Positions; HTO=High Turn Over.

Development of the entire site is expected to be completed by the year 2010. It includes the development of 57± acres of industrial, commercial, and office uses. As shown in Table IV-1, the proposed project will generate 15,570 daily trips, of which 1,085 would occur during the morning peak hour (800 inbound and 285 outbound) and 1,574 would occur during the evening peak hour (593 inbound and 981 outbound).

Along the western boundary of the project site is a cumulative project consisting of a hotel and two restaurants. Although the hotel and restaurants are being planned in conjunction with the proposed project, they are being processed separately. Therefore, the trip generation from the hotel and restaurants is addressed herein as a cumulative development (as shown in Table IV-1), rather than as part of the proposed project trip generation.

The development of mixed-use projects reduces the trip generation associated with the development below that which is projected directly from ITE trip generation rates because the ITE rates were developed from isolated single-use developments and therefore ignore trip overlap that occurs between various land uses on-site. To account for the potential for trip interaction between the various uses proposed for the project, 10 percent of the project trip generation was assumed to be internal trips with both an origin and destination on-site. No reduction in trip generation was assumed for pass-by trips, even though a significant portion of the trips that enter the site will already be on the adjacent street system, regardless of whether or not the proposed development occurs.

Project-Related Trip Distribution and Assignment

Traffic distribution is the determination of the directional orientation of traffic. It is based upon the geographical location of the site and land uses which will serve as trip origins and destinations. Traffic assignment is the determination of which specific routes project-related traffic will use, once the generalized traffic distribution is determined. The basic factors affecting route selection are minimizing time and distance. Other considerations might be the aesthetic quality of alternate routes, the number of turning maneuvers, and avoidance of congestion. Site access locations and turn restrictions at site driveways directly affect the site traffic assignment.

Figure IV-1 presents the percentage of project-related daily traffic utilizing the roadway links in the study area, based upon the existing distribution of land uses, turning movements at intersections, and distributions shown in traffic studies for nearby projects. Figure IV-2 provides the directional distribution of peak hour site traffic at the key intersections.

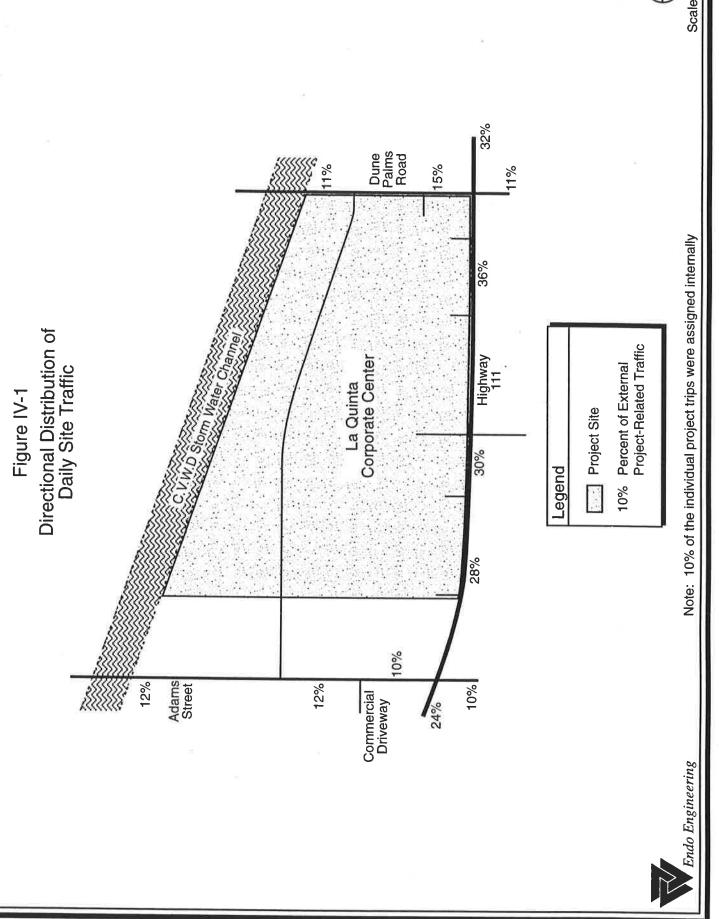
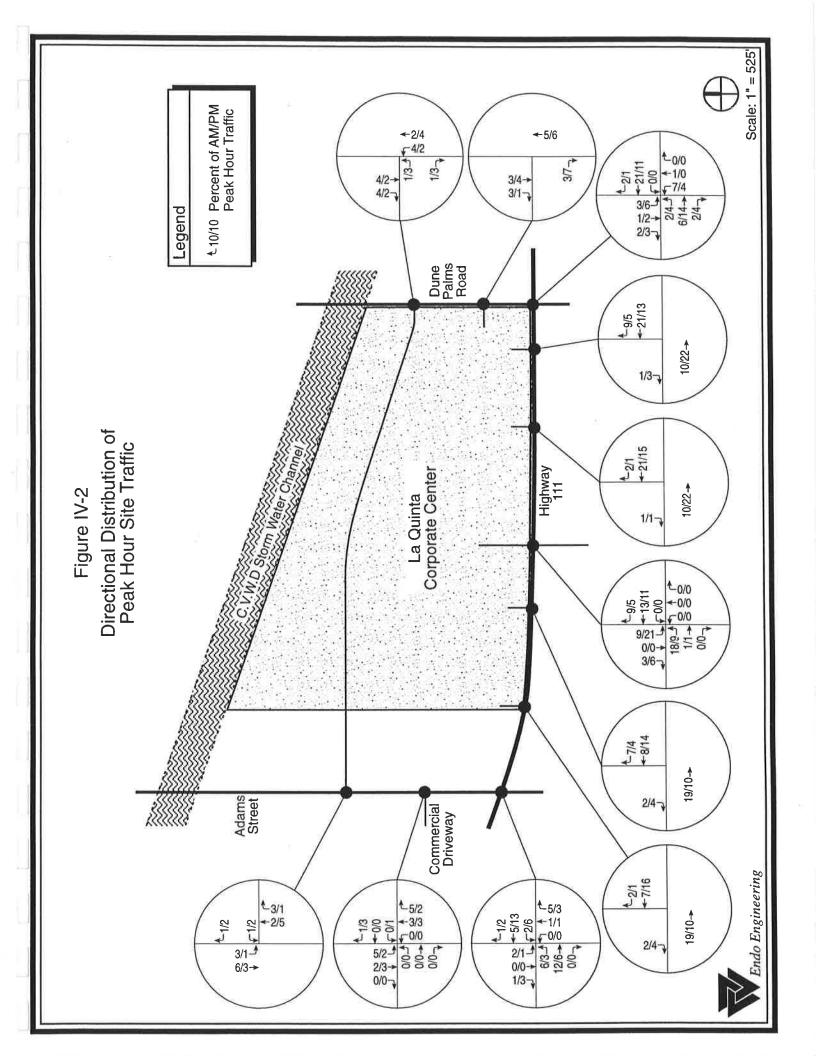
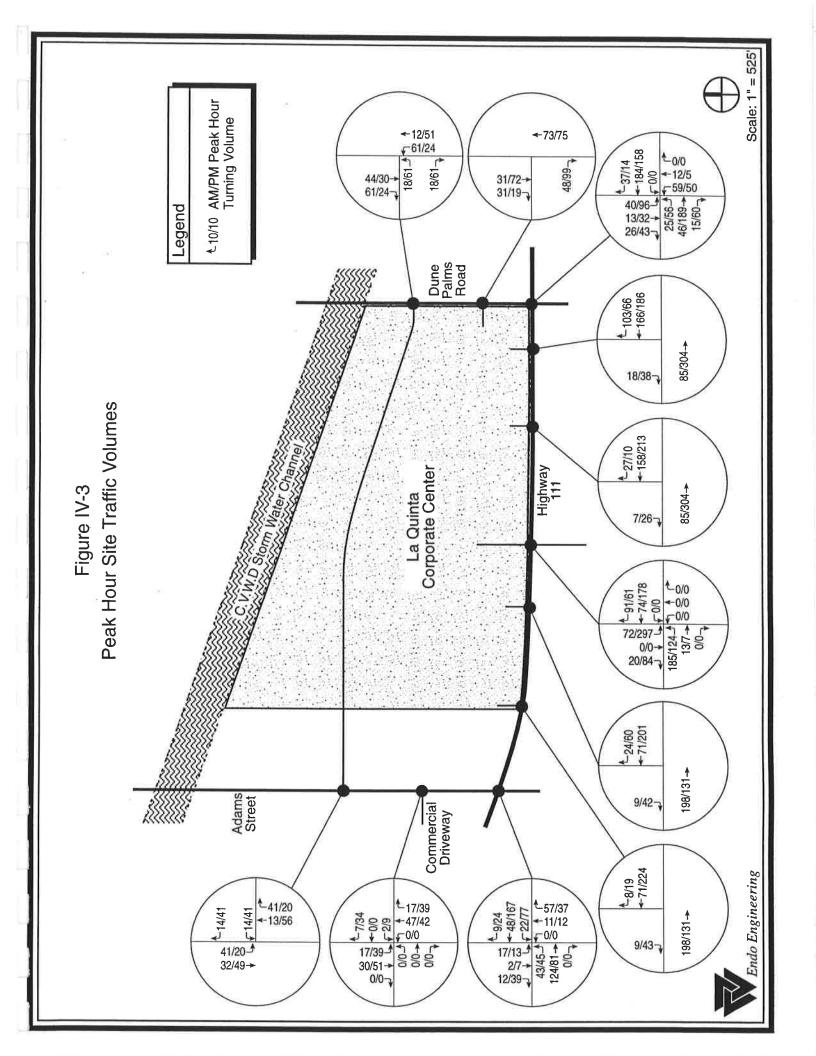
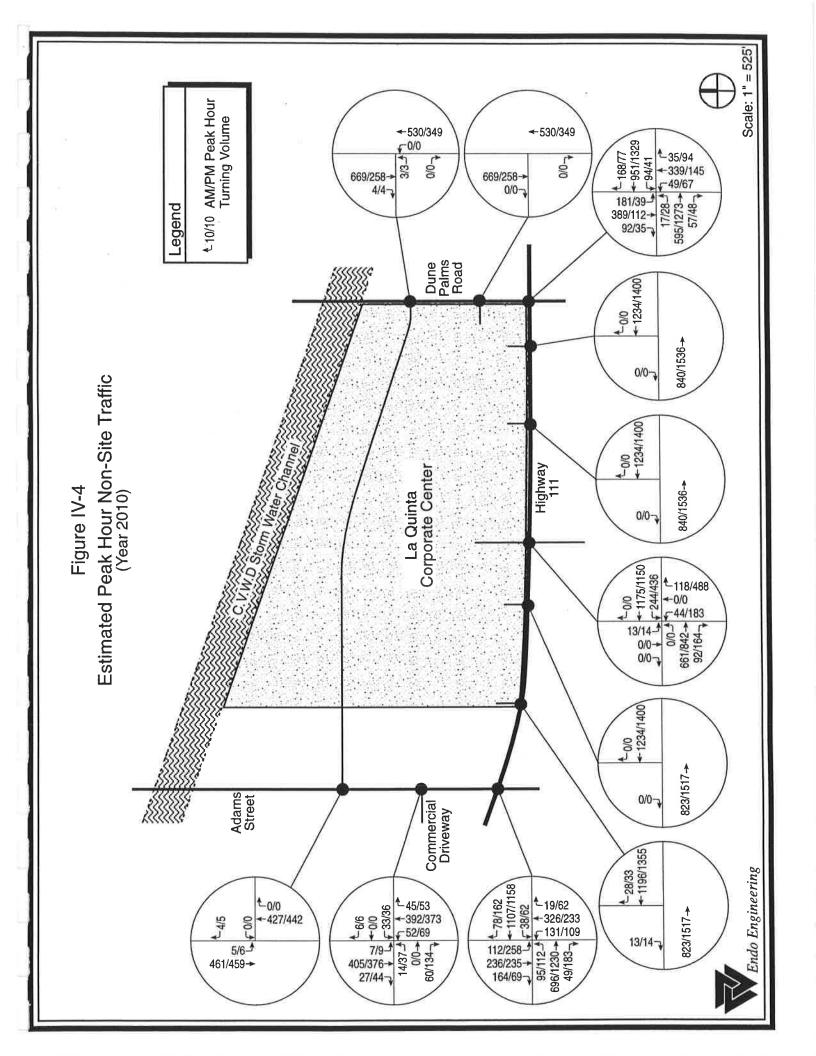

Figure IV-3 presents the project-related (year 2010) peak hour turning movement volumes at the project driveways and key intersections in the study area. The year 2020 site traffic volumes will be the same as the year 2010 site traffic volumes shown in Figure IV-3.

Table IV-2 provides daily traffic projections within the study area for each future scenario including year 2010 conditions (with and without the proposed project), and year 2020 conditions (with and without the proposed project). Year 1999 peak season daily volumes are included for comparison.

IV. B THROUGH TRAFFIC


Year 2010 non-site traffic volumes are provided in Figure IV-4. They were developed by interpolating between existing traffic volumes and year 2020 build-out volumes. The year 2010 daily traffic projections are shown in Table IV-2.


Year 2020 non-site peak hour traffic volumes are provided in Figure IV-5. They were developed by increasing existing turning movements to reflect the projected growth in daily traffic volumes between 1999 and 2020. Year 2020 daily volumes were based upon projections from the General Plan Update traffic model by BRW, Inc., for Adams Street and Dune Palms Road. Year 2020 daily traffic volumes on Highway 111 assumed that the highest volume link would operate at the upper limit of level of service E (54,000 ADT) with the project. After subtracting the project contribution to obtain the non-site traffic, a background traffic volume of 48,450 ADT was assumed to represent the year 2020 daily volume along Highway 111. The year 2020 daily traffic projections are shown in Table IV-2.



Scale: 1" = 525'

Note: 10% of the individual project trips were assigned internally

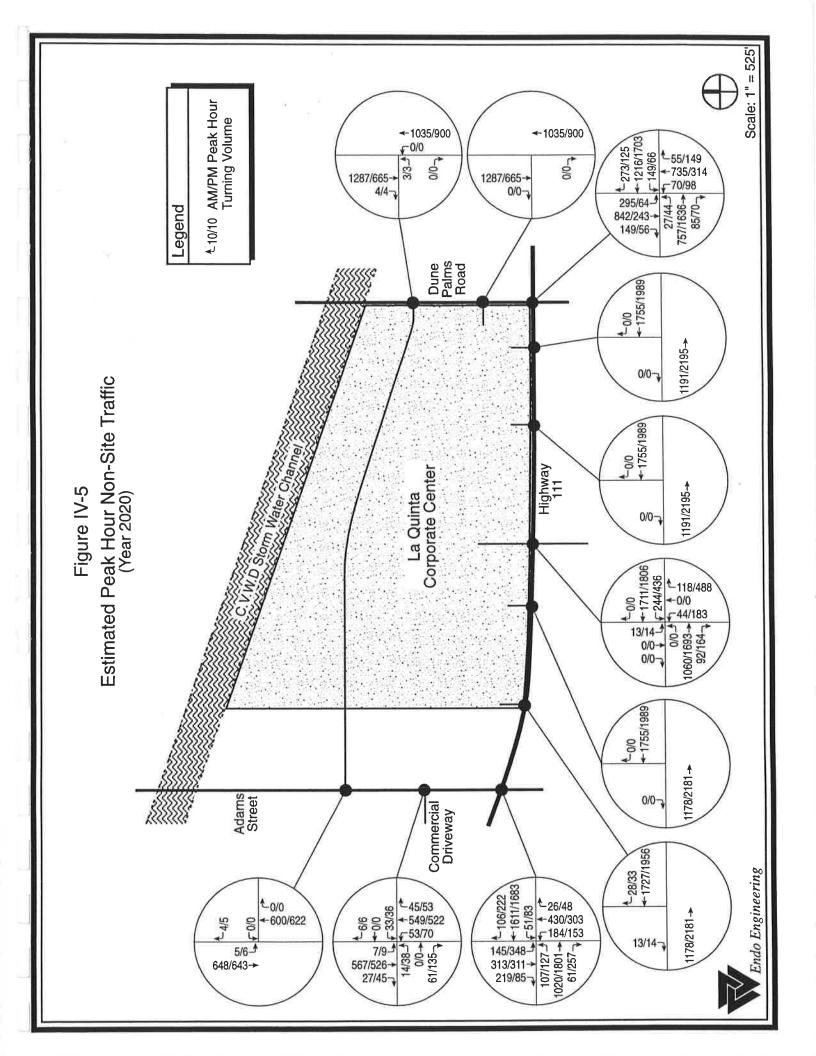
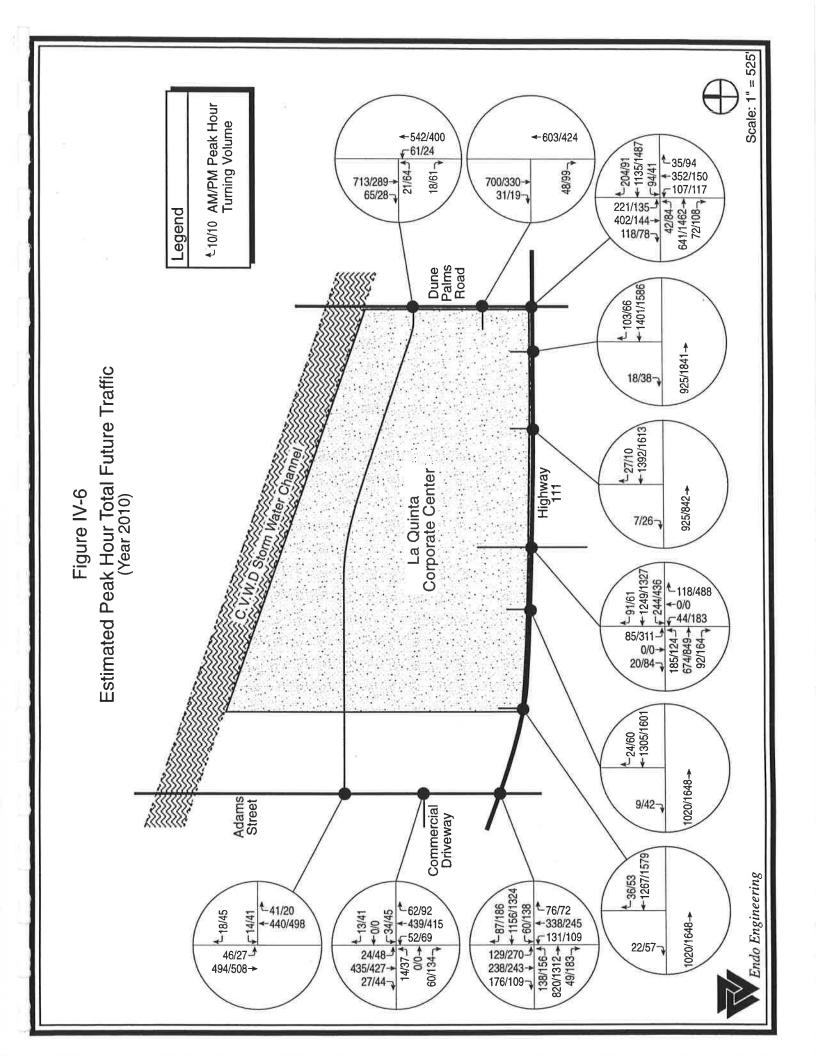
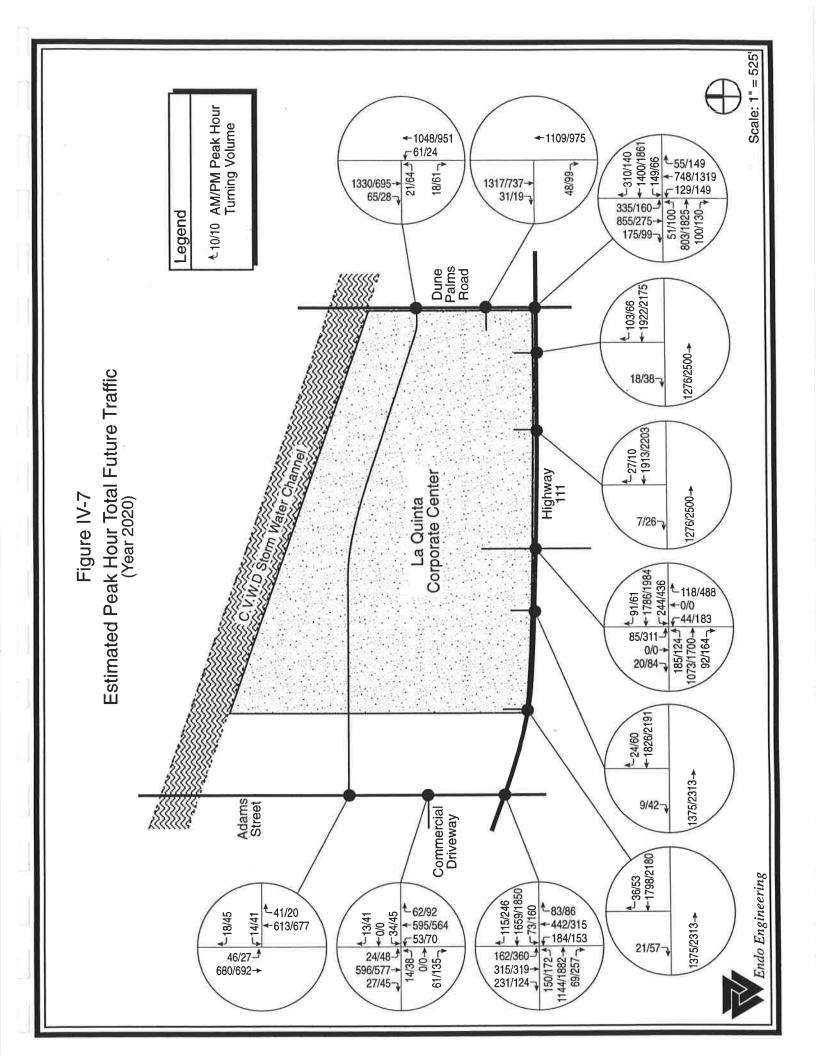


Table IV-2
Daily Traffic Volumes By Scenario


Roadway Link	1999 ^a	2010	2010	2020	2020
	Peak Season	Ambient	+Project	Ambient	+Project
Highway 111 - W/O Adams Street - E/O Adams Street - W/O Dune Palms Road - E/O Dune Palms Road	21,650	33,010	36,360	48,450	51,800
	22,290	33,480	37,550	48,450	52,520
	23,420	34,280	39,830	48,450	54,000
	24,110	34,750	39,250	48,450	52,960
Adams Street - N/O Project Site - N/O Highway 111 - S/O Highway 111	7,050	10,360	12,010	14,700	16,350
	7,840	10,890	12,280	14,700	16,090
	6,840	9,430	10,790	12,640	14,000
Dune Palms Road - N/O Project Site - N/O Highway 111 - S/O Highway 111	2,490	7,100	8,660	18,370	19,930
	2,490	7,100	9,230	18,370	20,500
	2,940	7,680	9,130	18,370	19,820


a. Estimated from 1999 peak hour traffic counts at the key intersections by assuming that 8.5% of the daily traffic occurs during the evening peak hour. These volumes were rounded to the nearest ten vehicles.

IV. C TOTAL TRAFFIC

Figure IV-6 shows the year 2010 total peak hour traffic volumes within the study area upon completion project. The total peak hour volumes shown in Figure IV-6 were developed by adding the site traffic (shown in Figure IV-3) to the 2010 non-site traffic (depicted in Figure IV-4).

Figure IV-7 shows the year 2020 total peak hour traffic volumes within the study area upon build-out of the proposed project and cumulative projects. The total peak hour volumes shown in Figure IV-7 were developed by adding the site traffic (shown in Figure IV-3) to the 2020 non-site traffic (depicted in Figure IV-5).

V. TRAFFIC ANALYSIS

V. A SITE ACCESS

The proposed project benefits from access to three master planned roadways. State Highway 111 and Dune Palms Road border the project site on the south and east, respectively. Adams Street is located west of the project site and is accessible via a proposed east/west industrial street across the northern half of the project site. Site access is adequate to serve the future traffic demands associated with proposed project.

The proposed Site Development Plan incorporates internal connections to the neighboring Adams Hotel site at three points. These connections benefit the proposed development by permitting access to Adams Street and the two restaurants proposed in conjunction with the Adams Hotel development. They also benefit the Adams Hotel development by permitting easy access to the fitness center, the office and the retail uses proposed on-site.

City street access guidelines include Circulation Policy 3-3.1.3 which states: a) access by individual driveways to Major and Primary Arterials shall be restricted wherever possible; b) access to Major and Primary Arterials shall be limited through the use of medians and access controls; and c) when permitted, access along arterial and collector streets shall be located a minimum of 250 feet from the ends of the curb returns.

The proposed Site Development Plan includes six site driveways onto master planned streets, five of which are along Highway 111. A sixth driveway is proposed on Dune Palms Road, midway between Highway 111 and the proposed industrial street on-site (see Figure II-2).

The main site access is proposed on Highway 111 in the center of the site, opposite the main entry to the approved La Quinta Auto Center. This driveway will provide full access and will be signalized. The other four driveways proposed along Highway 111 will be restricted to right turns only. Three of the four driveways along Highway 111 are consistent with the City access design guidelines which require them to be located a minimum of 250 feet (from curb return to curb return) from the closest intersection.

The two site driveways proposed closest to the intersection of Highway 111 and Dune Palms Road will be located 250 feet from the intersection (from nearest edge to edge) in order to better serve the proposed gas station. This represents a minor deviation from City Circulation Policy 3-3.1.3. The driveway proposed on Dune Palms Road will be located 250 feet north of Highway 111 and will be restricted to right turns only. The driveway proposed on Highway 111 will be located 250 feet west of Dune Palms Road and will be restricted to right turns only.

V. B CAPACITY AND LEVEL OF SERVICE AND IMPROVEMENT ANALYSIS

Roadway capacity has been defined as the maximum number of vehicles that can pass over a given roadway during a given time period under prevailing roadway and traffic conditions. By comparison, levels of service are a relative measure of driver satisfaction, with values ranging from A (free flow) to F (forced flow). Levels of service (LOS) reflect a number of factors such as speed and travel time, traffic interruptions, vehicle delay, freedom to maneuver, driver comfort and convenience, safety and vehicle operating costs.

Peak hour traffic creates the heaviest demand on the circulation system and the lane configuration at intersections is the limiting factor in roadway capacity; consequently, peak hour intersection capacity analyses are useful indicators of "worst-case" conditions. The relationship between peak hour intersection capacity and levels of service is provided in Appendix 2 (Table A-1) for unsignalized intersections and Appendix 4 (Table A-2) for signalized intersections.

The La Quinta General Plan circulation Policy 3-2.1.3 establishes Level of Service "D" as the minimum acceptable intersection Level of Service allowed. No development project shall be approved which will increase the traffic at City intersections to the extent that an LOS worse that LOS D during the A.M. or P.M. peak hour results without adequate mitigation.

Existing 1999 Traffic Conditions

Two of the existing key intersections in the project vicinity (Highway 111 at Adams Street and Highway 111 at Dune Palms Road) are controlled by traffic signals. Figure III-1 indicates where traffic signals and where stop signs control traffic at the existing key intersections. The commercial driveway on Adams Street north of Highway 111 (that is located opposite the proposed Adams Hotel access) is currently controlled by a stop sign facing eastbound vehicles.

Unsignalized Intersection Analysis

The measure of effectiveness for unsignalized intersections is average total delay per vehicle. The 1994 update to the *Highway Capacity Manual* (TRB Special Report 209) includes an unsignalized intersection operational methodology which is the basis for determining unsignalized intersection delay. The existing unsignalized key intersections were evaluated with the methodology outlined in the 1994 *Highway Capacity Manual* (HCM). A general discussion of this methodology is included in Appendix 2.

The Highway Capacity Software (HCS) package is a direct computerized implementation of the 1994 HCM procedures, prepared under FHWA sponsorship and maintained by the McTrans Center at the University of Florida Transportation Research Center. HCS Release 2.1d was employed to assess the unsignalized key intersections in the project vicinity. Computerized HCS worksheets for the unsignalized intersections analyzed are included in Appendix 2.

Existing average total delay per vehicle and the corresponding level of service for the unsignalized key intersection is provided in Table V-1, assuming existing lane geometrics. As shown therein, the existing commercial driveway on Adams Street (opposite the future Adams Hotel access) is currently operating at level of service (LOS) A during both morning and evening peak hours.

Average intersection delay ranges from 0.7 during the morning peak hour to 1.4 seconds per vehicle during the evening peak hour at this key intersection. The eastbound movement experiences the most delay at this intersection. This movement operates at LOS A during the morning peak hour and LOS B during the evening peak hour (with average delays ranging from 4.4 to 5.4 seconds per vehicle).

Existing (1999) Unsignalized Intersection Peak Hour Delay and LOS Summary^a (Peak Season Average Weekday) Table V-1

		Existing C	Ondition (1999)	No Project)	
Unsignalized Intersection	Inter	ntersection	Moven	dovement With The Most Delay	Delay
	Delay	Level of Service	Move	Delay L	Level of Service
Adams Street @ Hotel Access					
- AM Peak Hour	0.7	LOS A	台	4.4	LOS A
- PM Peak Hour	1.4	LOS A	EB	5.4	LOS B

a. Delay=Average Total Delay (seconds/vehicle); EB=castbound. LOS was determined from the delay (0-5 sec./veh.=LOS A; 5-10 sec./veh.=LOS B; 10-20 sec./veh.=LOS C; 20-30 sec./veh.=LOS D; 30-45 sec./veh.=LOS E; 45+ sec./veh. = LOS F) per 1994 HCM page 10-12. Appendix 2 includes all of the HCS unsignalized intersection peak hour worksheets.

Traffic Signal Warrants

The justification for the installation of a traffic signal at an intersection is based on the warrants adopted by Caltrans and the Federal Highway Administration. There are 11 types of traffic signal warrants including one for minimum vehicular volume, interruption of continuous traffic, minimum pedestrian volume, school crossings, progressive movement, accident experience, systems organization, a combination of warrants, a four-hour volume warrant, a peak hour delay warrant, and a peak hour volume warrant.

The installation of a traffic signal should be considered if one or more of the warrants is met; however, the satisfaction of a warrant is not necessarily sufficient justification in and of itself for the installation of signals. Delay, congestion, approach conditions, driver confusion, future land use or other evidence of the need for right-of-way assignment beyond that which could be provided by stop signs must be demonstrated. Improper or unwarranted signal installations may cause: (1) excessive delay; (2) disobedience of the signal indications; (3) circuitous travel on alternate routes; and (4) increased accident frequency.¹

Rural volume warrants (70 percent of the urban warrants) apply when the 85th percentile speed of traffic on the major street exceeds 40 mph in either an urban or a rural area, or when the intersection lies within the built-up area of an isolated community with a population under 10,000. All other areas are considered urban and urban warrants should apply.

Planning level signal warrants (in terms of daily traffic volumes) were checked for the unsignalized key intersection of Adams Street at the Adams Hotel access for 1999 peak season conditions. Urban warrants were applied because the existing speed of traffic on the Adams Street is 35 mph. As shown in Appendix 3, this intersection does not appear to currently meet planning level daily signal warrants. Moreover, it does not meet the Caltrans peak hour traffic volume warrant.

Signalized Intersection Analysis

The measure of effectiveness for signalized intersections is average stopped delay per vehicle. The 1994 update to the *Highway Capacity Manual* includes a signalized intersection operational methodology which is the basis for determining signalized intersection delay. The Highway Capacity Software (HCS) package is a direct computerized implementation of the 1994 HCM procedures. HCS Release 2.4d was utilized to evaluate the key signalized intersection in the project vicinity. A general discussion of this methodology and the computerized HCS worksheets for the signalized intersection analyzed are included in Appendix 4.

The 1994 *Highway Capacity Manual* (HCM) signalized intersection capacity and level of service methodology addresses the capacity and level of service of intersection approaches as well as the level of service of the intersection as a whole. The analysis is undertaken in terms of the ratio of demand flow rate to capacity (V/C ratio) for individual movements during the peak hour and the composite V/C ratio for the sum of critical movements or lane groups within the intersection.

The level of service is determined based upon average stopped delay per vehicle. Average stopped delay is the total time vehicles are stopped in an intersection approach during a specified time interval divided by the volume departing from the approach during the same

^{1.} Caltrans; Traffic Manual; Revised 3/1/95; pg. 9-1 and 9-2.

time period. It does not include queue follow-up time (i.e. the time required for the vehicle to travel from the last-in-queue position to the first-in- queue position).

A critical V/C ratio less than 1.00 indicates that all movements at the intersection can be accommodated within the defined cycle length and phase sequence by proportionally allocating green time. In other words, the total available green time in the phase sequence is adequate to handle all movements, if properly allocated.

It is possible to have unacceptable delays (LOS F) while the V/C ratio is below 1.00 (when the cycle length is long, the lane group has a long red time because of signal timing and/or the signal progression for the subject movements is poor). Conversely, a saturated approach (with V/C ratio ≥ 1.00) may have low delays if the cycle length is short and/or the signal progression is favorable. Therefore, an LOS F designation may not necessarily mean that the intersection, approach or lane group is overloaded and LOS A to LOS E does not automatically imply available unused capacity.

Existing average stopped delay values and the corresponding levels of service during peak hours at the two currently signalized key intersections are provided in Table V-2, assuming existing lane geometrics. The intersection of Highway 111 and Adams Street currently operates at level of service B (LOS B) during the morning and evening peak hours. The average stopped delay ranges from 13.5 seconds/vehicle during the morning peak hour to 14.3 seconds/vehicle during the evening peak hour.

The intersection of Highway 111 and Dune Palms Road also currently operates at level of service B (LOS B) during the morning and evening peak hours. The average stopped delay ranges from 7.0 seconds/vehicle during the evening peak hour to 13.7 seconds/vehicle during the morning peak hour. LOS B at signalized intersections corresponds to average stopped delay values between 5.0 and 15.0 seconds/vehicle.

Table V-2
Existing (1999) Signalized Intersection
Peak Hour Delay and LOS Summary^a

Signalized Intersection	Avg. Stopped Delay (Sec./Veh.)	V/C Ratio	Level of Service
Highway 111 @ Adams Street	1		
- Morning Peak Hour	13.5	0.514	В
- Evening Peak Hour	14.3	0.598	В
Highway 111 @ Dune Palms Road			
- Morning Peak Hour	13.7	0.454	В
- Evening Peak Hour	7.0	0.450	В

a. Based upon 1999 peak season traffic volumes and intersection geometrics and the 1994 *Highway Capacity Manual* Signalized Operation Methodology implemented by Version 2.4d of the Highway Capacity Software (8/11/96). A nine percent truck mix was assumed, per the December 1998 Caltrans publication "1997 Annual Average Daily Truck Traffic on California State Highways". Refer to the signalized intersection HCS worksheets in Appendix 4 for input parameters.

Year 2010 Ambient Conditions

Unsignalized Intersection Analysis

Tables V-3 and V-4 provide the delay values and levels of service at the key unsignalized and signalized intersections, respectively, for year 2010 conditions with and without the proposed project. The non-site traffic volumes include the cumulative traffic associated with the Adams Hotel project, the La Quinta Auto Center development driveway volumes, and the application of an annual traffic growth rate to reflect other cumulative development and the future growth in through traffic on Highway 111. The lane geometrics assumed for the year 2010 at all key intersections are shown in Figure VI-2.

The unsignalized key intersection of Adams Street and the Adams Hotel access will provide LOS A operation during peak hours in the year 2010 without the proposed project. The movements with the most delay at this unsignalized key intersection (westbound approach) are projected to experience LOS C, with average total delays of 12.7 seconds/vehicle in the morning peak hour and 14.0 seconds/vehicle during the evening peak hour.

Signalized Intersection Analysis

All three signalized key intersections will operate at LOS C or better (acceptable levels of service) in the year 2010, prior to the addition of site traffic. The intersection with the longest average stopped delay is projected to be Highway 111 @ Dune Palms Road during the morning peak hour (with an average delay of 21.3 seconds/vehicle which corresponds to LOS C). During the P.M. peak hour, this intersection is expected to provide a higher level of service (LOS B operation).

The intersection of Highway 111 and Adams Street is projected to operate at LOS C during both A.M. and P.M. peak hours in the year 2010, prior to the addition of site traffic. The average stopped delay will be comparable during the morning and evening peak periods (15.6 to 16.8 seconds/vehicle). The intersection of Highway 111 and the main site access is projected to operate at LOS B during the morning peak and LOS C during the evening peak hours. Without site traffic volumes, the average stopped delay is expected to range between 11.3 seconds/vehicle and 15.6 seconds/vehicle.

Year 2010 Plus Project Traffic Conditions

Unsignalized Intersection Analysis

With the addition of project-related traffic, the unsignalized key intersection will continue to provide LOS A operation in the year 2010, as shown in Table V-3. Site traffic will increase the average total delay by 0.1 seconds/vehicle during the A.M. peak hour and 0.6 seconds/vehicle during the P.M. peak hour. The movements with the most delay (westbound) at this intersection are projected to operate at LOS C, after site traffic is added.

Signalized Intersection Analysis

As shown in Table V-4, the addition of site traffic will not change the peak hour LOS at two of the three signalized key intersections analyzed (Highway 111 @ Adams Street and Highway 111 @ the main site access). However, the peak hour LOS will drop from LOS C to LOS D (during the morning peak) and from LOS B to LOS C during evening peak hours at the intersection of Highway 111 @ Dune Palms Road when site traffic is added to year 2010 non-site traffic volumes.

Year 2010 Unsignalized Intersection Peak Hour Delay and LOS Summary^a (Peak Season Average Weekday) Table V-3

	Z	o-Project		M	ith Projec		Change I	l ul
Unsignalized Intersection	Intersection Delay/LOS	Move w/ Move	Most Delay Delay/LOS	ntersection Move w/ Most Delay Intersection Move w/ Most Delay/LOS Delay/LOS Move Delay/LOS	Move w/ Move	Most Delay Delay/LOS		tion
Adams Street @ Hotel Access - AM Peak Hour - PM Peak Hour	1.1/LOS A 1.9/LOS A	WB	12.7/LOS C 14.0/LOS C	12.7/LOS C 1.2/LOS A 2.5/LOS A 2.5/LOS A	WB	14.1/LOS C 15.6/LOS C	0.1	No No

a. Delay=Average Total Delay (seconds/vehicle). WB=westbound. LOS was determined from the delay (0-5 sec./veh.=LOS A; 5-10 sec./veh.=LOS B; 10-20 sec./veh.=LOS C; 20-30 sec./veh.=LOS D; 30-45 sec./veh.=LOS E; 45+ sec./veh.=LOS F) per 1994 HCM page 10-12. Appendix 2 includes all of the HCS unsignalized intersection peak hour worksheets.

Table V-4
Year 2010 Signalized Intersection Peak Hour Delay and LOS Summary^a
(Peak Season Average Weekday)

Signalized Intersection Highway 111 @ Adams Street - AM Peak Hour	Avg. Delay (Sec./Veh.)	Critical V/C 0.677	COS COT	Avg. Delay (Sec./Veh.)	Critical V/C 0.733 0.825	LOS C LOS C LOS C	Avg. (Sec./	Change I Delay Veh.)
Highway 111 @ Main Site Access - AM Peak Hour - PM Peak Hour	11.3 15.6	0.620	LOS B LOS C	13.6	0.731	LOS B LOS C		2.3
Highway 111 @ Dune Palms Road - AM Peak Hour - PM Peak Hour	21.3	0.772	LOS C LOS B	31.6 18.5	0.936	LOS D LOS C		10.3

a. Average Delay=Average Stopped Delay (seconds per vehicle). Appendix 4 includes all of the HCS signalized intersection peak hour worksheets.

As shown in Table V-4, all three of the signalized key intersections are projected to operate at acceptable levels of service (LOS D or better) during peak hours with or without the proposed project. The peak hour level of service will drop at one of the three signalized key intersections, once site traffic is added to the street system. The intersection of Highway 111 and Dune Palms Road will experience a drop from LOS C to LOS D during the A.M. peak hours and a drop from LOS B to LOS C during the evening peak hours when site traffic is added to non-site traffic in the year 2010. Site traffic will increase the average stopped delay at this intersection by 10.3 seconds/vehicle during the A.M. and 7.5 seconds/vehicle during the P.M. peak hour

Year 2020 Ambient Conditions

Traffic Signal Warrants

Peak hour and daily planning level signal warrants were checked for three of the unsignalized intersections in the study area for 2020 peak season conditions with and without the proposed project. These intersections included: (1) Adams Street @ the Adams Hotel access; (2) Adams Street @ the proposed industrial street on-site; and (3) Dune Palms Road @ the proposed industrial street on-site. As shown in Appendix 3, one of these unsignalized intersections is projected to meet traffic signal warrants based upon year 2020+project volumes.

Adams Street at the Adams Hotel access was found to barely meet the peak hour signal warrant in the year 2020 as a result of westbound approach volumes (that were not affected by site traffic). Although existing volumes associated with the Wal-Mart and ultimate traffic volumes on Adams Street were sufficient to meet the peak hour warrant, the projected LOS at this intersection was determined to be acceptable without signalization. Consequently, a traffic signal is not required at this location under ultimate (year 2020+project) conditions.

Signal warrants were not met at the intersection of Adams Street and the proposed industrial street on-site under buildout (year 2020+project) conditions. Future volumes were insufficient to meet peak hour or daily traffic signal warrants and the peak hour levels of service at this intersection were found to be acceptable without signalization.

Signal warrants were met at the intersection of Dune Palms Road @ the proposed industrial street on-site under buildout (year 2020+project) conditions. Future volumes were sufficient to meet peak hour and daily traffic signal warrants and the peak hour levels of service at this intersection were found to be unacceptable without signalization.

Unsignalized Intersection Analysis

Tables V-5 and V-6 provide the delay values and levels of service at the key unsignalized and signalized intersections, respectively, for year 2020 conditions with and without the proposed project. The non-site traffic volumes included all of the traffic associated with buildout of the cumulative developments. Year 2020 lane geometrics assumed for all intersections are shown in Figure VI-3.

As shown in Table V-5, the unsignalized key intersection will provide LOS A operation in the year 2020 prior to the addition of site traffic. The movements (westbound) with the most delay at the unsignalized key intersection are projected to experience LOS D operation with average delays of up to 23.5 seconds/vehicle.

Year 2020 Unsignalized Intersection Peak Hour Delay and LOS Summary^a (Peak Season Average Weekday) Table V-5

	_	Jo-Project		W	ith Projec		Change In	_
Unsignalized Intersection	Intersection Delay/LOS	Move w/ Move	Move W/ Most Delay Move Delay/LOS	ntersection Move w/ Most Delay Intersection Move w/ Most Delay LOS Move Delay/LOS Move Delay/LOS	Move w/ Move	Most Delay Delay/LOS	Intersection Delay LO	ion
Adams Street @ Hotel Access - AM Peak Hour - PM Peak Hour	1.2/LOS A 2.2/LOS A	WB WB	21.3/LOS D 1.5/LOS A 23.5/LOS D 3.5/LOS A	21.3/LOS D 1.5/LOS A 3.5/LOS D 3.5/LOS A	WB WB	24.0/LOS D 28.9/LOS D	0.3 1.3	No No

a. Delay=Average Total Delay (seconds/vehicle). WB=westbound. LOS was determined from the delay (0-5 sec./veh.=LOS A; 5-10 sec./veh.=LOS B; 10-20 sec./veh.=LOS C; 20-30 sec./veh.=LOS D; 30-45 sec./veh.=LOS E; 45+ sec./veh.=LOS F) per 1994 HCM page 10-12. Appendix 2 includes all of the HCS unsignalized intersection peak hour worksheets.

Year 2020 Signalized Intersection Peak Hour Delay and LOS Summary^a (Peak Season Average Weekday) Table V-6

	No	No-Project		Wit	h Project		Change In	In
Signalized Intersection	Avg. Delay (Sec./Veh.)	Critical V/C	LOS	Avg. Delay (Sec./Veh.)	Critical V/C	TOS	Avg. Delay (Sec./Veh.)	TOS
Highway 111 @ Adams Street - AM Peak Hour - PM Peak Hour	16.8	0.759	LOS C	18.2 20.9	0.808	TOS C	1.4	No No
Highway 111 @ Main Site Access - AM Peak Hour - PM Peak Hour	7.9	0.544	LOS B LOS B	10.8 24.8	0.960	LOS B	2.9	No B-C
Highway 111 @ Dune Palms Road - AM Peak Hour - PM Peak Hour	19.2 13.4	0.807	LOS C LOS B	21.4	0.893	LOS C	2.2	No B-C

a. Average Delay=Average Stopped Delay (seconds per vehicle). Appendix 4 includes all of the HCS signalized intersection peak hour worksheets.

Signalized Intersection Analysis

The signalized key intersections are projected to operate at acceptable levels of service (LOS C or better) in the year 2020 prior to the addition of site traffic, as shown in Table V-6. The intersection with the longest average delay is projected to be Highway 111 @ Dune Palms Road during the morning peak hour (with an average of 19.2 seconds/vehicle of delay which corresponds to LOS C).

Year 2020 Plus Project Traffic Conditions

Unsignalized Intersection Analysis

Following the addition of site traffic, the unsignalized key intersection of Adams Street and the Adams Hotel access will continue to provide LOS A operation in the year 2020, as shown in Table V-5. The movements with the most delay at this intersection (westbound) are projected to operate at LOS D. Site traffic will increase the average total delay at this intersection by 0.3 seconds/vehicle during the A.M. peak hour and 1.3 seconds/vehicle during the P.M. peak hour.

Signalized Intersection Analysis

As shown in Table V-6, the signalized key intersections will operate at acceptable levels of service (LOS C or better) in the year 2020 with or without site traffic. The peak hour levels of service at two of the three key signalized intersections are projected to change following the addition of project-related traffic. The P.M. peak hour LOS will drop from LOS B to LOS C at the Highway 111 intersections with Dune Palms Road and the main site access.

The intersection with the longest average delay is expected to be Highway 111 @ the main site access during the evening peak hour. This intersection is projected to have an average delay of 24.8 seconds/vehicle under year 2020+project conditions, which corresponds to LOS C operation. Site traffic will increase the average stopped delay at this intersection by 11.8 seconds/vehicle during the evening peak hour.

Level of Service Summary

Table V-7 summarizes the morning and evening peak hour LOS findings at each key intersection in the study area with each development scenario. As shown therein, acceptable levels of service are projected to occur for all scenarios, provided traffic signals are installed when warranted and roadway improvements consistent with Figures VI-2 and VI-3 are phased to coincide with projected increases in traffic volumes. These roadway improvements are consistent with the master planned cross-sections.

Following implementation of the proposed mitigation measures, the proposed project will have a less-than significant impact on all roads and intersections in the study area. All streets and key intersections are projected to maintain a minimum of LOS D, per La Quinta Circulation Policy 3-2.1.3.

Table V-7
Level of Service Summary^a

Key Intersection	1999	2010	2010	2020 ^b	2020 ^b
	Peak Season	Ambient	+Project	Ambient	+Project
Adams Street - Adams Hotel Access - Highway 111	A/A	A/A	A/A	A/A	A/A
	B/B	C/C	C/C	C/C	C/C
Highway 111 - Main Site Access - Dune Palms Road	–	B/C	B/C	B/B	B/C
	B/B	C/B	D/C	C/B	C/C

a. Format is AM/PM peak hour Level of Service.b. For year 2020 conditions, the surrounding streets were assumed to be constructed to their master planned cross-sections which include: six through lanes on Highway 111, four travel lanes on Dune Palms Road and 4 travel lanes on Adams Street.

VI. FINDINGS AND CONCLUSIONS

VI.A Site Accessibility

The project has adequate access to serve the proposed land uses. No mid-block improvements beyond those shown in the La Quinta General Plan Circulation Element are required to accommodate site traffic at acceptable levels of service (LOS D or better). North of Highway 111, both Adams Street and Dune Palms Road will require flaring to accommodate dual southbound left-turn lanes.

Both of the proposed driveways for the service station (adjacent to the intersection of Dune Palms Road and Highway 111) deviate from the City access design standard requiring a minimum of 250 feet from the curb returns between driveways and intersections. The driveways are located approximately 250 feet from the edge of the nearest intersection, but do not include the extra space associated with the curb returns.

The proposed industrial street intersection on Adams Street varies from the City access design standard requiring a minimum of 250 feet between driveways and intersections. The existing self-storage facility is located directly to the north of the proposed intersection, and the middle Wal-Mart shopping center driveway is located approximately 150 feet north of the proposed intersection.

VI.B Traffic Impacts

The following are the circulation impacts associated with the proposed project:

- 1. The trip generation associated with build-out of the proposed project would total approximately 15,570 daily trips, of which 1,085 would occur during the morning peak hour (800 inbound and 285 outbound) and 1,574 would occur during the evening peak hour (593 inbound and 981 outbound).
- 2. The project will take primary access to Highway 111 which is projected to operate at its physical capacity by the year 2020 with a daily volume of 54,000 ADT.
- 3. The intersection of the proposed industrial road with Dune Palms Road will require signalization to serve site traffic and citywide build-out traffic volumes at acceptable levels of service.
- 4. The intersection of Adams Street and Highway 111 will require dual southbound left-turn lanes to serve site traffic and citywide build-out traffic volumes at acceptable levels of service.
- 5. The intersection of Dune Palms Road and Highway 111 will require dual southbound left-turn lanes to serve site traffic and citywide build-out traffic volumes at acceptable levels of service.
- 6. The intersection of the Main Site Access and Highway 111 will require dual westbound left-turn lanes (into the La Quinta Auto Centre) to serve citywide build-out traffic volumes at acceptable levels of service.
- 7. The year 2020 intersection lane requirements can be accommodated within the master planned cross-sections, with the exception of flaring needed along Adams Street and Dune Palms ,road north of Highway 111, to accommodate dual southbound left-turn lanes.

VI.C Off-Site Improvements Needed

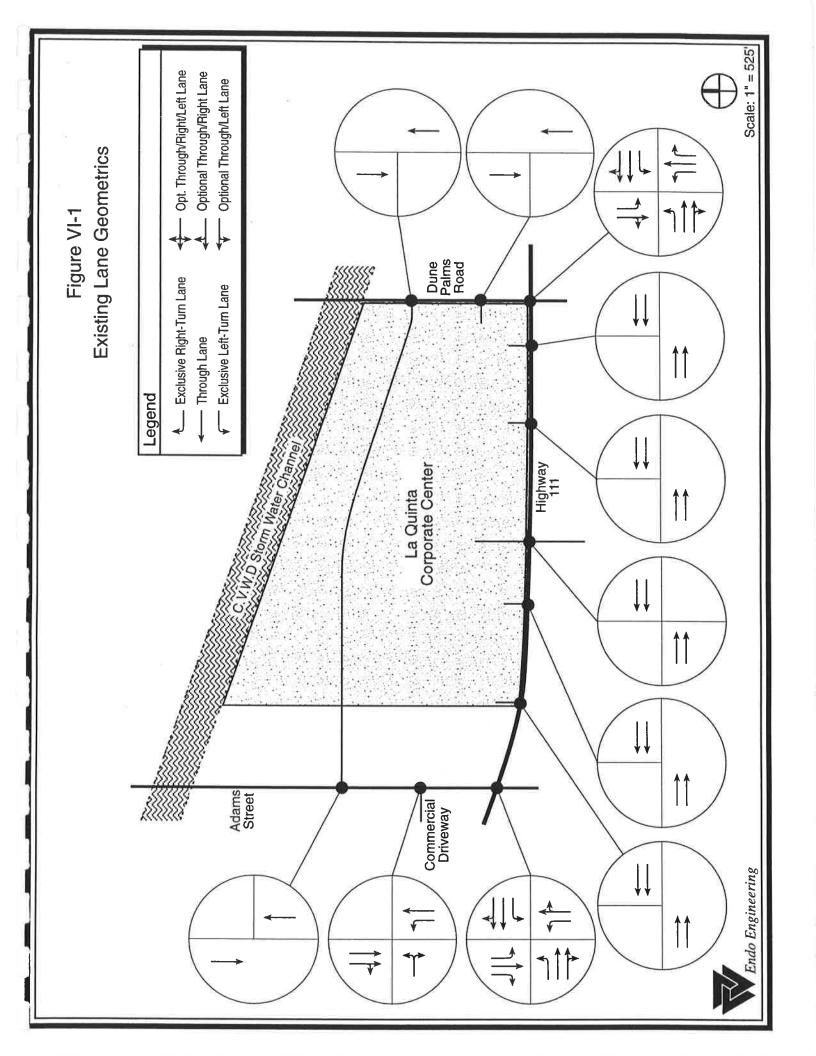
Figure VI-1 depicts the existing lane geometrics. None of the key intersections require signalization or additional lanes to provide acceptable levels of service (LOS C or better) for current traffic volumes.

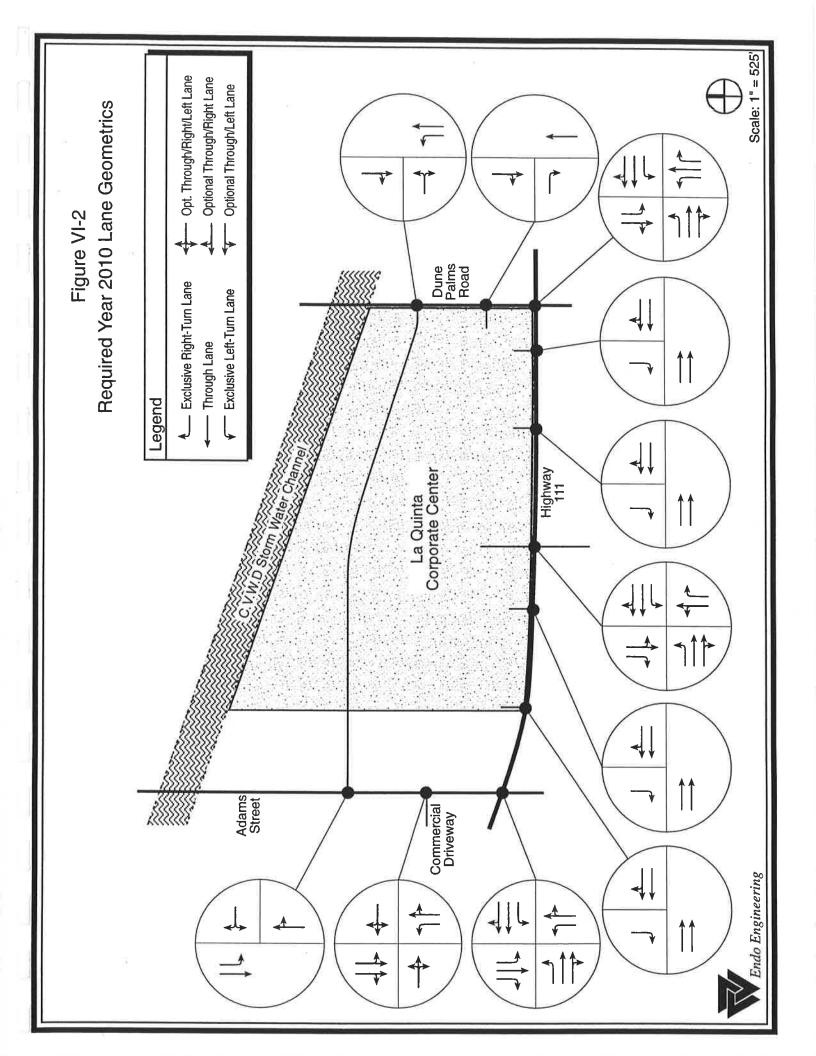
Year 2010 Improvements

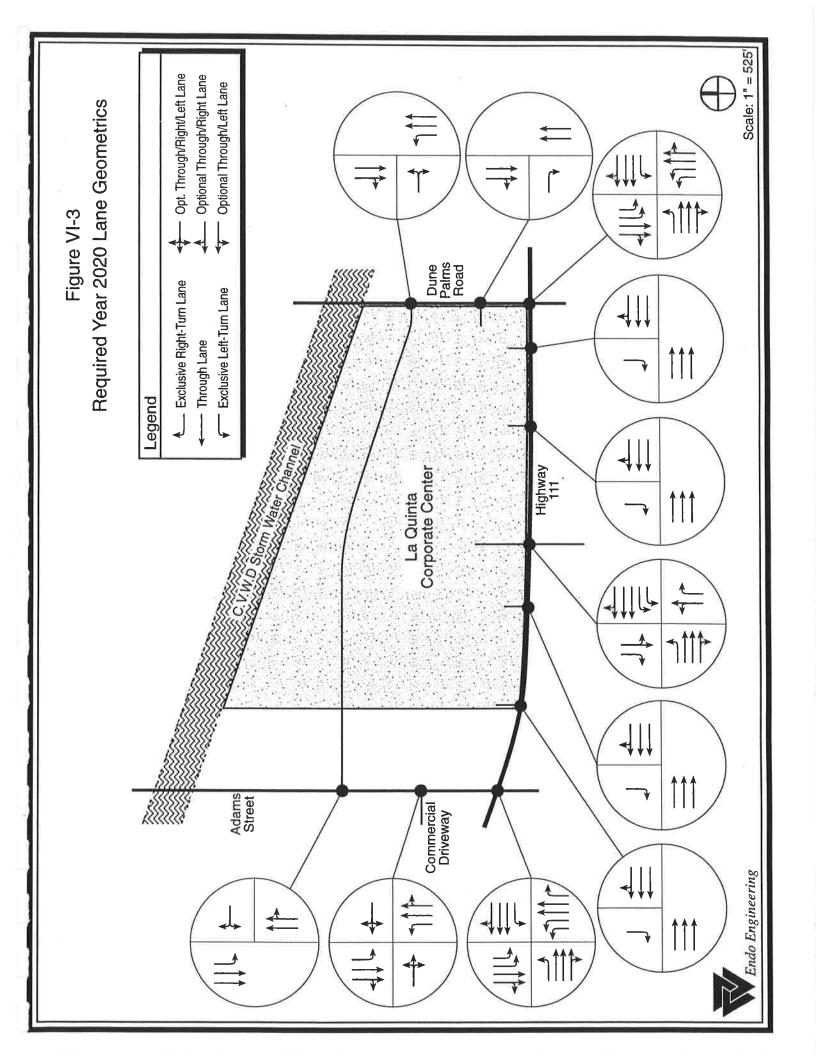
Figure VI-2 illustrates the minimum lane requirements to accommodate year 2010 traffic volumes at acceptable levels of service (with or without the proposed project). None of the key intersections require signalization or additional lanes (other than those lanes necessary to provide access to the project) to ensure acceptable levels of service for projected traffic volumes.

Since the proposed industrial street intersects Adams Street approximately 150 feet south of the middle Wal-Mart shopping center driveway, the proposed access varies from the City access design standard requiring a minimum of 250 feet between driveway locations and the nearest intersection. There is insufficient room to provide back-to-back left-turn pockets between the proposed industrial street and the middle Wal-Mart shopping center driveway. Site traffic could be accommodated by restriping the left-turn pocket for the Wal-Mart shopping center driveway as a two-way left-turn lane from the Wal-Mart shopping center driveway to the proposed industrial street.

Year 2020 Improvements


Figure VI-3 shows the minimum lane requirements for acceptable levels of service at the key intersections upon build-out of the proposed development and the City of La Quinta (year 2020 conditions). As shown therein, Highway 111, Adams Street, and Dune Palms Road will need to be fully improved to their master planned cross-sections to serve citywide build-out traffic volumes at acceptable levels of service. In addition, both Adams Street and Dune Palms Road will need to be flared along the southbound approach to Highway 111 to accommodate dual southbound left-turn lanes.


Traffic Signal Warrants


Planning level daily traffic signal warrants were checked for the one unsignalized key intersection (Adams Street @ Adams Hotel Access), and the intersections of the proposed industrial street with Adams Street and with Dune Palms Road (see the worksheets in Appendix 3). Although the intersection of Adams Street @ Adams Hotel Access appears to just meet signal warrants (assuming a two-lane major street and a one-lane minor street) based upon the existing volumes at the Wal-Mart shopping center driveway and year 2020 volumes on Adams Street, the intersection will provide adequate levels of service without signalization under citywide build-out conditions based upon the HCS unsignalized intersection analysis. The peak hour approach volume from the Adams Hotel Access is approximately one-half of the existing approach volume from the Wal-Mart shopping center driveway.

The intersection of the industrial street with Adams Street will not meet signal warrants and will provide adequate levels of service without a traffic signal under citywide build-out conditions. The intersection of the industrial street with Dune Palms Road will meet signal warrants and will not provide acceptable levels of service under citywide build-out conditions unless it is signalized.

^{1.} Source: BRW, Inc.; "City of La Quinta 1992 General Plan Update EIR"; July 15, 1992; page 4-149.

VI.D Compliance With General Plan Circulation Policies

The proposed circulation system is generally consistent with the La Quinta Circulation Element. The project appears to comply with the General Plan policies (as shown in Appendix 5) except as noted above regarding the minimum intersection spacing standard of 250 feet. See Appendix 5 for the response to each La Quinta General Plan Policy.

VI.E CMP System Improvements Needed

The proposed project will contribute to the improvements identified in Figure VI-3 for the key intersections along Highway 111 (a CMP roadway).

VII. RECOMMENDATIONS

VII.A Site Access/Circulation Plan

The proposed development is served by three master planned streets as shown in Figure II-1. The primary project access is along Highway 111, with Adams Street and Dune Palms Road providing north-south access. Direct site access is provided by four driveways and one intersection on Highway 111, one driveway and one intersection on Adams Street, and one driveway and one intersection along Dune Palms Road. The four driveways on Highway 111 and the one driveway on Dune Palms Road will be restricted to right-turn movements. Only one proposed intersection (Dune Palms Road @ proposed industrial street) will require signalization upon completion of the project. The intersection at the main access location on Highway 111 will require signalization, with or without the project based upon the cumulative development of the La Quinta Auto Centre.

The following mitigation measures are recommended to reduce potential circulation impacts associated with the proposed project and site access.

- 1. The proposed internal circulation layout shall be subject to the review and approval of the City Traffic Engineer during the development review process to insure compliance with City of La Quinta minimum access and design standards.
- 2. Adequate off-street parking (including handicapped parking) shall be provided per the parking requirements of the Municipal Code.
- 3. All internal streets shall be fully constructed to their ultimate cross-section as adjacent on-site development occurs.
- 4. Sidewalks and streetlights shall be installed on-site as specified by the City.
- 5. Clear, unobstructed sight distance shall be provided at all internal street intersections on-site.
- 6. A STOP sign will control exiting site traffic and clear unobstructed sight distances shall be provided at all site driveways.
- 7. The project proponent shall provide (at a minimum) the lane geometrics shown in Figures VI-2 and VI-3 at the site access locations in conjunction with adjacent development.
- 8. The project proponent shall install a traffic signal when warranted at the intersection of the proposed industrial street and Dune Palms Road.
- 9. The project proponent may be required to participate in a traffic mitigation fee program which would ensure that a "fair-share" contribution is made to future roadway improvements within the project vicinity.

VII.B Roadway Improvements

Several roadway and traffic signal improvements will be required adjacent to the project site (as detailed in Figures VI-2 and VI-3) to provide adequate capacity for the proposed La Quinta Corporate Centre and citywide build-out traffic volumes. The project should participate in any improvements of areawide benefit on a "fair share" basis based upon

established fee programs (e.g. Traffic Signal Mitigation Fee), and be responsible for the implementation of site specific mitigation required by the City of La Quinta.

VII.C Transportation System Management Actions

The California Environmental Quality Act specifies that mitigation measures be identified which would further reduce the impacts of a project, even though the measures are not incorporated in the project. This allows local decision makers to decide whether or not the additional measures are warranted. Transportation System Management (TSM) actions fall into this category inasmuch as they would further reduce project-related impacts but are not incorporated in the project as proposed. The City of La Quinta could require a TSM Plan as a condition of approval. Such a plan would identify specific measures that are feasible on-site.

Appendices

- 1. 1999 Peak Hour Traffic Count Data
 2. HCM Unsignalized Intersection Methodology and Worksheets
 3. Traffic Signal Warrants
 4. HCM Signalized Intersection Methodology and Worksheets
 5. Consistency With General Plan Circulation Policies

Appendix 1

TRAFFIC COUNT DATA

ty of La Quinta M,S: Adams Street E/W: Highway 111 ATHER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093632 Start Date: 02/18/99 File I.D. : LQAD111A Page : 1

momat noting

12	TOTAL	AOPO:

are seen extrapolity and an article article				ji on-sesso		TOTAL	VOLUME							
Adams Str Southboun		Highway 1: Westbound	11		Adams S		*******	Highway Bastboun						
	Thru Right	Left	Thru R	ight	Left	Thru	Right	Left	Thru	Right	Total			
te 02/18/99 ak Hour Analysi Peak start 07:15 lume 65 rcent 20% Pk total 328 #ighest 07:45 lume 15	s By Entire 163 100 50% 30%	Intersection 07:15 24 3% 793 07:30 5	719 91%	the Pe	eriod: 0 07:1 90 28% 326 07:3 22	5 223 68%	09:00 d	on 02/18/ 07:15 38 7% 530 08:00	458 86%	34 68				
i total 98 PHF .84	32 32	258 .77	207	••	129 .63	102	J	157 .84	110					
				A	dams	Stre	eet			ļ	ı			
	•	0	100	: :	163	(A)	65	2	38 23 50					
		0	100		163		65	3	11			0	(*)	0
Highway 11	1		L	3	28 -	(539	*				50	(4)	50
90 719 100	909	_			TO	ral v	JOLUM	ΙE		79	3	719	(9€0	719
38	38		1,	439				1	,329	9	-	24	•	24
458	458	— 530			Inte	rsect 1,9		Total				536		65 458
34	34						547			L	High	nway 1	.11	13
0	0				24 163 34	-	90	326	23	1	3 .	0		
				345	221		90	2	23	1	3	0		
				A	dams	Stre	eet		<u>I</u>					

ty of La Quinta h,3: Adams Street B/W: Highway 111 https: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093632 Start Date: 02/18/99 File I.D. : LQAD111A

Page : 1

								IVIAL	AODOMB					
	dams St			Highway Westbou	111		Adams St Northboo			Highway Eastboun				
e 02/1	Left 8/99			Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total	
				r.	N		MC.							
7:00	14	31	10		117	13	13	45	4	5	86	9	353	
:15	17	= 43	23	5	150	12	27	72	3	8	83	3	446	
:30	14	45	34	5	239	14	22	102	5	14	107	6	607	
7:45	15	52	31	9	186	13	20	22	3	8	128	16	503	
r Total	60	171	98	25	692	52	82	241	15	35	404	34	1909	
:00	19	23	12	5	144	11	21	27	2	8	140	9	421	
8:15	17	21	12	4	157	18	22	22	5	8	117	9	412	
:30	18	17	14	3	179	14	8	34	2	5	125	11	430	
:45	26	22	18	4	159	18	16	28	4	7	125	7	434	
r Total	80	83	56	16	639	61	67	111	13	28	507	36	1697	
*LATOTAL	140	254	154	10	1331	113	I.K.	352	28		911	70	3606	
ak Hour	Analys	sis By		ual Appr	oach fo		eriod: 0	7:00 to		on 02/18/	/99			
eak star				07:3			07:0			07:45				
lume	60	171	98	23	726	56	82	241	15	29	510	45		
cent	18%	528	30%	3%	90%	78	24%	71%	4 %	5%	87%	88		
k total	329			805			338	*		584	_			
ghest	07:45		24	07:3			07:3		_	08:00				
tume	15 98	- 52	31	5	239	14	22	102	5	8	140	9		
ı total HF				258			129			157				
	.84			.78			.66			.93 		ا		
ık Hour	Analys	sis By	Entire	Intersec	tion fo	r the P	eriod: 0	7:00 to	09:00	on 02/18/	/99	3		
eak star ''ume			100	07:1		£0	07:1		13	07:15				
cent	65 20%	163 50%	100	24	719 91%	50	90	223	13	38	458	34		
k total	328	201	30%	38	718	68	28%	68%	48	7%	86%	68		
ighest	07:45			793	1		326	٨		530	í.			
ume	15	52	31	07:3		1.4	07:3		r	08:00		_		
_ total	98	34	21	258	239	14	22	102	5	8	140	9		
HF	.84			.77			129			157				
1E	.04			,11			.63			.84		9		

(y of La Quinta N,J: Adams Street E/W: Highway 111 N THER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093632 Start Date: 02/17/99 File I.D. : LQAD111P Page : 1

V21	TOTAL VOLUME			
Highway 111 Westbound	Adams Street Northbound	Highway 111 Bastbound		
Left Thru Right	Left Thru Right	Left Thru Right	Total	
Intersection for the P	eriod: 16:00 to 18:00 (on 02/17/99		
16:15	16:15 75 154 24	16:15 45 809 126		
4% 84% 12%	30% 61% 9%	5% 83% 13%		
16:45	17:00	16:15		
		13 225 21 259		
.92	.89	.95		
	Adams Street			
0 . 34 .	162 164	45		
	162		0	0
		306	O O	
	666		Γ	. 107
			107	
	· TOTAL VOLUM	E	-	751
		89	98 751	
_ 1			:	
1,84	0	1,895	40	. 40
- 1		Ï	L	
980		Total	997	164 809
-	2,131		-	24
	500 SA:		- Highway 1	.11
	581	253		
	40 75	2	24 0	
	162			
5±				
1	328 75	154	24 0	
	11	310		
	Westbound Left Thru Right Intersection for the P 16:15 40 751 107 4% 84% 12% 898 16:45 13 205 27 245 .92 O	Highway 111 Northbound Left Thru Right Left Thru Right Left Thru Right Intersection for the Period: 16:00 to 18:00 of 16:15 40 751 107 75 154 24 48 848 128 30% 61% 9% 898 253 16:45 17:00 13 205 27 20 47 4 245 71 .92 .89 Adams Street O 34 162 164 360 666 O TOTAL VOLUM O 34 162 164 360 360 581 S81 S	Highway 111	Highway 111

:y of La Quinta k,J: Adams Street B/W: Highway 111 ' \THER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

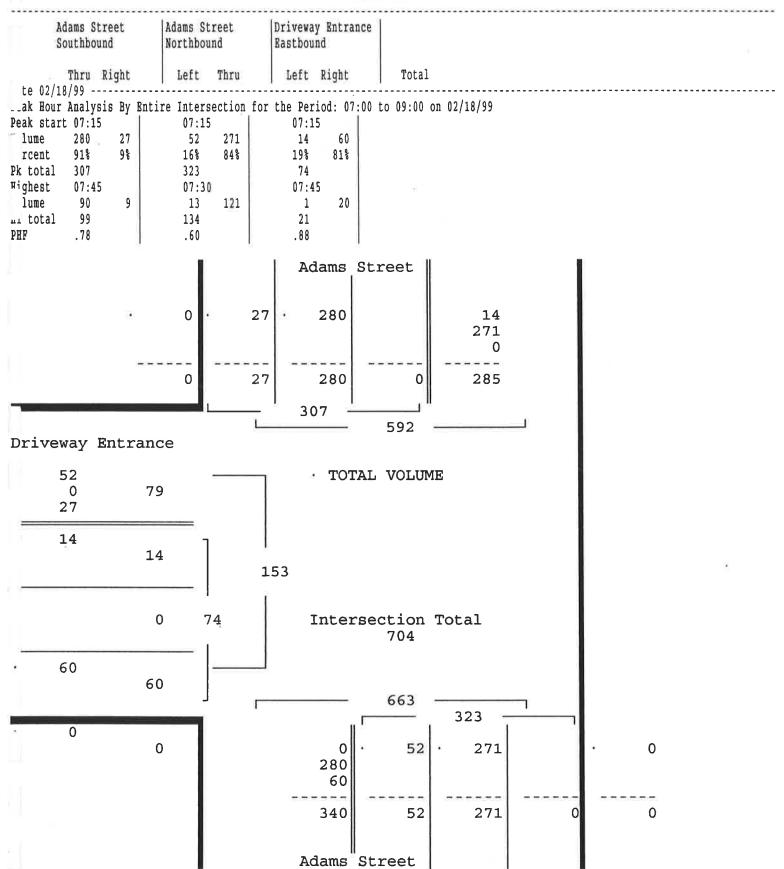
TOTAL VOLUME

Site Code : 00093632 Start Date: 02/17/99 File I.D. : LQAD111P Page : 1

	Adams St Southbou			Highway Westbour			Adams St Northbou			Highway Bastbour			
1 - 02/	Left 17/99		Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
1 .C U2/	11/33 50							garan dan da					
16:00	41	35	9	5	175	24	16	45	. 8	14	189	25	586
1 15	43	. 33	7	12	161	29	16	30	7	13	225	21	597
30	46	47	7	11	184	23	18	43	8	15	186	27	615
16:45	34	41	7	13	205	27	21	34	5_	8	212	38	645
Hr Total	164	156	30	41	725	103	71	152	28	50	812	111	2443
				54 20			(2) (2)			ra N		2	
1:00	41	41	13	4	201	28	20	47	4	9	186	40	634
17:15	20	46	9	9	187	26	15	43	3	11	193	29	591
:30	37	50	5	5	186	16	23	45	2	14	211	27	621
:45	21	35	5	5	157	18	14	20		6	174	18	477
Hr Total	119	172	32		731	88	30	155	13	*	764	114	2323
TOTAL	283	328	62			191	143		41		1576		
ak Hou	r Analys	ia Rv					eriod: 16					******	
Peak sta			Individ	16:30		I CHE I	16:45		10.00	16:1		1	
lume	164	162	34	37	777	104	79		14	45		126	
ccent	46%	45%	9%	4%	85%		1				83%		
Pk total			,	918	001		262	030		980	034	131	
righest	16:30)		16:45	i		17:00			16:1	5		
lume		47	7	13	205	27			4			21	
hi total		-		245			71			259		-=	
HF	.90			.94			.92			. 95			
ii seesse			n			******			40.00	00/48	/00		(±)/
			Butire			r the P	eriod: 16		18:00	14		3	
	rt 16:15		24	16:15		107	16:15		0.4	16:1		406	
"-".ume	164	162	34	40	751	107	75	154	24	45	809		
: :cent	46%	45%	98	48	84%	12%	30%	61%	98	5%	83%	13%	
Pĸ total		ì		898	•		253	DE		980	г		
Highest	16:30		n	16:45		0.0	17:00		,	16:1		۱ ۱	
'.ume	46	47	7	13	205	27	20	47	4		225	21	
L. total				245			71			259			
PHF	.90			.92			.89			.95		Į.	

ty of La Quinta M/S: Adams Street

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557


909-247-6716

Site Code : 00093611 Start Date: 02/18/99 File I.D. : LQADDRAM

Page

B/W: Driveway/north of Highway 111

ATHER: Sunny

y of La Quinta b, 3: Adams Street

E/W: Driveway/north of Highway 111

THER: Sunny

COUNTS UNLIMITED
25424 JACLYN AVENUE
MORENO VALLEY, CA 92557
909-247-6716

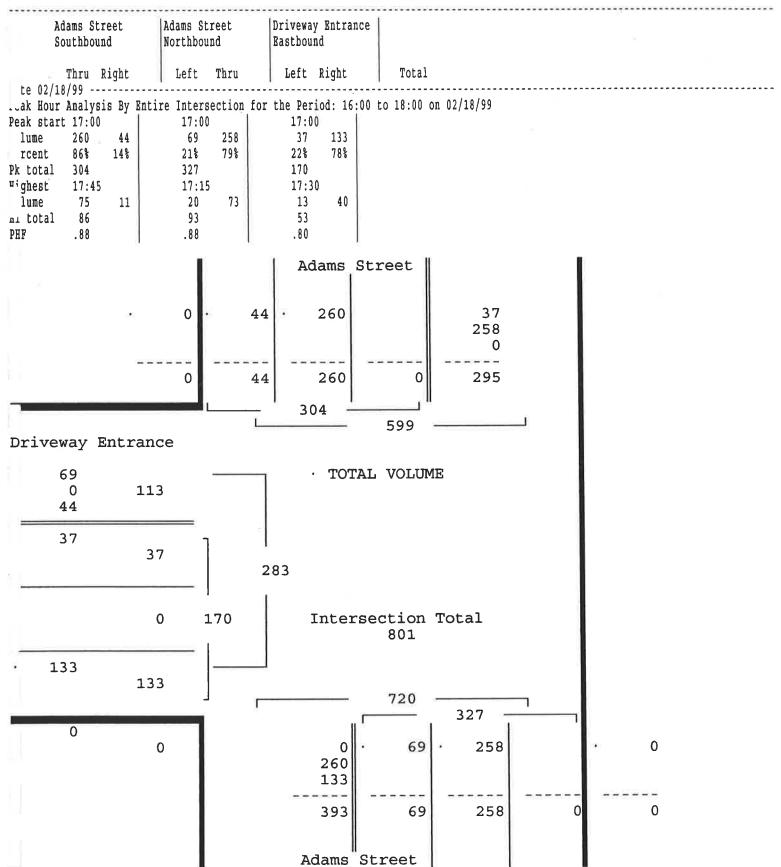
Site Code : 00093611 Start Date: 02/18/99 File I.D. : LQADDRAM

Page : 1

THER:	sunny)."	TOT	TAL VOLUME			Page	: 1
	dams Stree	et	Adams St.		Driveway Bastboun		e [*********	
:e 02/18	Thru Rig 8/99	ght	Left	Thru	Left	Right	Total		:-	 	
07:00 :15 :30 07:45 Hr Total	39 72 76 90 277	6 5 5 9	18 13 13 8 52	42 77 121 45 285	2 5 4 1	8 11 13 20 52	115 183 232 173 703				
00:00 08:15 :30 :45 Hr Total	42 42 36 40 160	8 7 8 11 34	18 10 16 28 72	28 36 37 31 132	2 2 2 6	16 12 16 16	116 109 115 132 472				
TOTAL	437	 59	124	417	26	112	1175				
Peak star lume rcent Pk total wighest lume ni total PHF		By Ind 27 9%	07:00 52 15% 337 07:30 13 134	285 85%	or the Peri 08:00 14 19% 74 08:45 6 22 .84	60 81%	0 to 09:00 on	02/18/99		14	

ak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 02/18/99

Peak start	07:15		07:15	i	07:15	- 1
"lume	280	27	= 52	271	14	60
rcent	91%	98	16%	84%	19%	81%
Pk total	307		323		74	1
Highest	07:45		07:30)	07:45	
lume	90	9	13	121	1	20
total	99		134		21	
PHF	.78		.60		.88	


ty of La Quinta M/S: Adams Street B/W: Driveway/north of 111

ATHER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093632 Start Date: 02/18/99 File I.D. : LQADDRPM

Page

y of La Quinta w/s: Adams Street

B/W: Driveway/north of 111

THER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093632 Start Date: 02/18/99 File I.D. : LQADDRPM

Page : 1

200000000								TUTA	AT AOTOL	18				218 SE 4 SE 5 SE	
	Adams Str Southboun			ms Sti thboui			iveway stbound	Entrance 1							
:e 02,	Thru R /18/99		I	eft	Thru		Left 1	Right	To	tal 			*****	 	
16:00	63	4	1	19	75	1	8	20	1	189					
115	48	7		12	62		17	24	1 :	170					
30	56	4	-1	19	46		4	27	1 :	156					
16:45	66	18		10	65		3	29		191					
^p r Tota	1 233	33	į	60	248		32	100		706					
17:00	58	8	1	19	66		7	28		186					
17:15	60	11		20	73		6	30		200					
:30	67	14		17	66		13	40		217					
:45	75	11	_	13	53	_	11	35		198					
Hr Tota	1 260	44		69	258	ŀ	37	133	1	801					
TOTAL	493	77		129	506		69	233	1	507					
								. 1 . 4 . 6 . 0 . 0			00/10/1	•			
	ur Analysi art 17:00	re RA II	naiviai	16:45		IOT C	17:00		to 18:	UU OII	02/18/5	9			
lume	260	44		66	270		37	133							
rcent		14%		20%	80%		22%	78%							
Pk tota		114		336	000		170	, , ,							
" ghest				17:15			17:30								
3	21113	94			70		43								

lume	260	44	66	270	37	133	
rcent	86%	14%	20%	808	22%	78%	
Pk total	304		336		170		
" ghest	17:45		17:15		17:30		
lume	75	11	20	73	13	40	١
mı total	86		93		53		
PHF	.88		.90		.80		l
			5		*.6		

_ak Hour	Analysi	s By	Entire	Interse	ction	for	the Perio	d: 16	:00	to	18:00	on	02/18	/99
Peak star	t 17:00			17:00			17:00		1					
" lume	260	44		69	258		37	133	1					
rcent	86%	14%		21%	798		228	788						
Pk total	304			327			170		1					
Pighest	17:45		1	17:15			17:30		1					
lume	75	11		20	73		13	40						
nı total	86		1	93			53		1					
PHF	.88			.88			.80							

y of La Quinta h,c: Dune Palms Road E/W: Highway 111 THER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093611 Start Date: 02/17/99 File I.D. : LQDP111A

Page : 1

		TOTAL VOLUMB				
Dune Palms Rd Southbound	Highway 111 Westbound	Dune Palms Rd Northbound	Highway 111 Eastbound			
Left Thru Right	Left Thru Right	Left Thru Right	Left Thru R	ight Total		
e 02/17/99	07:15 57 688 98	07:15 24 145 21	on 02/17/99 07:15 9 426 2% 92%	30 6%		
ighest 07:30 ume 50 70 26 itotal 146 HF .55	07:30	07:30	08:00 0 125 135 .86	10	a	
		Dune Palms Rd		Ĭ		
18.	0 - 52 -	166 · 106	9 145 98			0
1	0 52	166 106	252	211	0	0
Highway 111		576			98	98
24 688 764 52		· TOTAL VOLUM	ΛΕ _	843	688	688
9	 	29	1,396		57	57
426	_	.5	1,350	L	J ,	
426 426	465	Intersection 1,822	Total	·	553	106 426 21
30 30		443		Hig	nway 111	
0		57 166 30	190 —	21	0	
		253 24	145	21	0	
		Dune Palms Rd		1		

y of La Quinta .,J: Dune Palms Road E/W: Highway 111 .THER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093611 Start Date: 02/17/99 File I.D. : LQDP111A Page : 1

	une Pal outhbou			Highway Westbour			Dune Pal Northbou			Highway Bastboun			
	Left		Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
e 02/1	.7/99							,,,,,,					
	- 4								_	1 . 2		ı î	24
07:00	14	21	4	15	122	18	5	20	5	1	86	4	31
.15		33	16	13	156	31	10	49	2	4	83	6	42
:30	50	70	26	10	210	49	6	69	6	3	100	7	60
07:45	24	43	8	20	161	6	5	19	- 6	2	118		41
r Total	110	167	54	58	649	104	26	157	19	10	387	24	176
.u:00	10	20	2	14	161	12	3	8	7	0	125	10	37
08:15	2	10	3	18	134	5	6	7	9	1	138	8	34
:30	5	11	6	11	190	2	5	3	13	2	141	3	39
:45	4	16	4	13	167	3	4		2	1	142	6	36
Hr Total	21	57	15	56	652	22	18	25	31	4	546	27	147
										on 02/17		51	
Peak star	t 07:0	0		07:1	5		07:00)		08:0	0		
lume	110	167	54	57	688	98	26	157	19	4	546	27	
rcent	33%	50%	16%	7%	828	12%	13%	78%	98	1%	95%	5%	
Pk total	331			843			202			577			
pighest	07:3	0		07:30)		07:30)		08:4	5		
lume	50	70	26	10	210	49	6	69	6		142	6	
ıı total	146	. •	- •	269			81			149			
PHF	.57			.78			.62			.97			
			Entire			or the F			09:00	on 02/17			r.
Peak star	t 07:1	5		07:1	5		07:15	5		07:1	5		
Peak star "lume	t 07:1: 106	5 166	52	07:15 57	688	98	07:15 24	145	21	07:1 9	5 426		
Peak star "lume rcent	106 33%	5	52	07:15 57 7%	5		07:15 24 13%	5	21	07:1 9 2%	5		
Peak star "lume rcent Pk total	106 338 324	5 166 51%	52	07:19 57 7% 843	688 82%	98	07:15 24 13% 190	145 76%	21	07:1 9 2% 465	5 426 92%		
Peak star "lume rcent Pk total Fighest	106 338 324 07:3	5 166 51%	52 16%	07:15 57 7% 843 07:3	688 82%	98 12%	07:15 24 13% 190 07:30	145 76%	21 11%	07:1 9 2% 465 08:0	5 426 92 % 0	68	
Peak star "lume rcent Pk total	106 338 324	5 166 51%	52	07:19 57 7% 843 07:30	688 82%	98	07:15 24 13% 190 07:30	145 76%	21 11%	07:1 9 2% 465 08:0	5 426 92%	68	
Peak star "lume rcent Pk total Fighest	106 338 324 07:3	5 166 51%	52 16%	07:15 57 7% 843 07:3	688 82%	98 12%	07:15 24 13% 190 07:30	145 76%	21 11%	07:1 9 2% 465 08:0	5 426 92 % 0	68	

y of La Quinta
M/S: Dune Palms Road
B/W: Highway 111
THER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093632 Start Date: 02/17/99
File I.D. : LQDP111P
Page : 1

				•		TOTAL	VOLUME		en area (C	o www.comenterpa				
	Palms Rd		Highway Westboun	111 d	Dune Pa			Highway Bastbour						
Le	eft Thru	Right	Left	Thru Rig	ht Left	Thru	Right	Left	Thru	Right	Total			
rcent 2 Pk total "ighest 1 lume ni total	nalysis By	Bntire 19 21%	Intersect 16:00 25 2% 1037 16:00 11 275	967 93%	ne Period: 1 45	0 62 41%	18:00 57 37%	on 02/17/ 16:00 15 2% 971 16:11 5 265	932 96%	24 2%	3			*
			ľ	Ŷ	Dune 1	Palma	s Rd	31 F			77. 13			
	*													
	796		0 •	19	48	D®X	23		15 62 45					0
			0	19	48		23	1	L22			0	20	O
					90		' 212							45
Highway	111						2.1.2					45		
34 967 19	71,	020	_		TO	TAL	VOLUM	ИE		1,03	- -— 37	967	•	967
15	5	15	_	1,	991			:	2,04	9	-	25	•	25
932	2	932	— 97 	1	Inte		tion 251	Tota	1		:===	1,012		23 932 57
• 24	1	24					250	1.5	2 -		- Higi	hway 11	1	
C)	0			25 48 24	1	34	15	62	· ·	57	0		
					97		34		62		 57	0		
					Dune	Π Palm	ıs Rd							

y of La Quinta A, 3: Dune Palms Road E/W: Highway 111 ATHER: Sunny

COUNTS UNLIMITED 25424 JACLYN AVENUE MORENO VALLEY, CA 92557 909-247-6716

Site Code : 00093632 Start Date: 02/17/99 File I.D. : LQDP111P

Page : 1

	Dune Pal Southbou			Highway Westbour			Dune Pal Northbou			Highway Eastbour			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Tota
ce 02/	17/99												
	_			E			ï			¥.		V.	
16:00	5	17	7	11	255	9	8	18	26	3	209	6	57
:15	7	. 5	4	6	236	7	11	18	7	5	252	8	56
:30	6	17	7	4	238	14	8	13	17	4	252	4	58
16:45	5	9	1	4	238	15	7	13	7	3	219	6	52
r Total	23	48	19	25	967	45	34	62	57	15	932	24	225
. : 00	9	16	6	6	189	13	1 11	34	15	1 2	208	5	51
17:15	15	24	9	5	219	9	3	14	1	4	238	2	54
:30	15	19	4	2	202	5	7	10	4	1	201	8	47
: 45	4	18	4	4	209		8	8	2	3	203	177.	4.8
ir Total		77	23	17	819	35	29	66	22	10	850	25	201

TOTAL*	66	125	42	42	1786	80	63	128	79	25	1782	49	426
ak Hou	r Analys rt 17:00 43 30% 143 17:15	77 54%		ual Appro 16:00 25 28 1037 16:00 11 275 .94	967 93%			5 78 48%	46	16:0 15	0 932 96%	24 2%	
eak sta	rt 16:00			Intersect)		16:0	0		16:0	0		
lume	23	48	19	25	967	45	34	62	57		932		
ccent	268	53%	21%	2 %	93%	48	22%	41%	378		96%	2%	
k total				1037			153			971			
ighest	16:30			16:00)		16:0	0		16:1	5		
lume	6	17	7	11	255	9	8	18	26	5	252	8	
total				275			52			265			

Appendix 2

HCM UNSIGNALIZED INTERSECTION METHODOLOGY AND WORKSHEETS

HCM Methodology HCS Worksheets

HCS: Unsignalized Intersections Release 2.1d HA_ADEA.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street

(E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min)

Analyst..... Greg

Date of Analysis..... 5/3/99

Other Information..... Existing Conditions AM Pk

Two-way Stop-controlled Intersection

=========	=====		-===:	-====	===	==	====	===	==:	===	==:	====		====	====
	Nor	thbou	ınd	Sou	ıthb	ou	nd	Е	as	tbc	un	d	Wes	stbou	nd
	L	${f T}$	R	L	${f T}$		R	L		T		R	L	${f T}$	R
						-			-		-				
No. Lanes	1	1	0	0	2	<	0	0	>	0	<	0	0	0	0
Stop/Yield			N				N								
Volumes	52	271			28	0	27	1	4			60			
PHF	1	1				1	1		1			1			
Grade		0				0					0				
MC's (%)															
SU/RV's (%)															
CV's (%)															
PCE's	1.10							1.1	0			1.10			

Adjustment Factors

Vehicle	Cri	tical	Follow-up
Maneuver	Gap	(tg)	Time (tf)
Left Turn Major Road	5	.00	2.10
Right Turn Minor Road		.50	2.60
Through Traffic Minor	Road 6	.00	3.30
Left Turn Minor Road	6	.50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:		154 1157 1157 0.94
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:		307 1224 1224 0.95
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Major LT, Minor TH		616 466
Impedance Factor: Adjusted Impedance Factor: Capacity Adjustment Factor		0.95 0.95
due to Impeding Movements Movement Capacity: (pcph)		0.95 444

Intersection Performance Summary

Mov	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB	L	15	444	892	4.4	0.2	А	4.4
EB	R	66	1157		4.4	0.2	Α	4.4
NB	L	57	1224		3.1	0.0	А	0.5

Intersection Delay = 0.7 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADEP.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street (E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min)

Analyst..... Greg

Date of Analysis..... 5/3/99

Other Information..... Existing Conditions PM Pk

Two-way Stop-controlled Intersection

=========	=====	====	====:	=====	====	==:	====	====	===	===	==:		=====	====:	====
	No	rthbo	und	Sot	ıthb	oui	nd	E	Eas	tbo	oun	d	Wes	stbou	nd
	L	${f T}$	R	L	\mathbf{T}		R	L		\mathbf{T}		R	L	T	R
						-		-	-						
No. Lanes	1	1	0	0	2	<	0	0	>	0	<	0	0	0	0
Stop/Yield			N				N								
Volumes	69	258			26	0	44	:	37			133			
PHF	1	1				1	1		1			1			
Grade		0				0					0		1		
MC's (%)															
SU/RV's (%)				i i							*1				
CV's (%)															
PCE's	1.10			1				1.3	10			1.10			

Adjustment Factors

Vehicle	Crit	cical	Follow-up
Maneuver	Gap	(tg)	Time (tf)
Left Turn Major Road	5.	. 0 0	2.10
Right Turn Minor Road	5.	. 50	2.60
Through Traffic Minor	Road 6.	. 0 0	3.30
Left Turn Minor Road	6.	. 50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:		152 1160 1160 0.87
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:		304 1228 1228 0.94
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Major LT, Minor TH		609 470
Impedance Factor: Adjusted Impedance Factor: Capacity Adjustment Factor		0.94 0.94
due to Impeding Movements Movement Capacity: (pcph)		0.94 441

Intersection Performance Summary

Intersection Delay = 1.4 sec/veh

Mov	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB	L	41	441	\$ 100 miles (100 miles				
EB	R	146	1160	855	5.4	1.0	В	5.4
NB	L	76	1228		3.1	0.1	A	0.7

HCS: Unsignalized Intersections Release 2.1d HA_ADOA.HCO Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street

(E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min)

Date of Analysis..... 5/3/99

Other Information.....Year 2010 No Project Conditions AM Pk

Two-way Stop-controlled Intersection

========	=====	====:	====	====	====	===:	====	====:	-===	====:	====:	====	===	====
	Northbound			Southbound				Eas	stbou	Westbound				
	L	T	R	L	Т		R	L	T	R	L	T		R
													-	
No. Lanes	1	1	< 0	0	> 2	<	0	0 :	> 1	< 0	0	> 1	<	0
Stop/Yield			N				N							
Volumes	52	392	45	7	4()5	27	14	1	60	33		1	6
PHF	1	1	1	1		1	1	1	1	1	1		1	1
Grade		0				0			0				0	
MC's (%)														
SU/RV's (%)														
CV's (%)														
PCE's	1.10			1.10				1.10	1.10	1.10	1.10	1.1	0 :	1.10

Adjustment Factors

Vehicle		Critical	Follow-up
Maneuver		Gap (tg)	Time (tf)
Left Turn Major Road		5.00	2.10
Right Turn Minor Road		5.50	2.60
Through Traffic Minor	Road	6.00	3.30
Left Turn Minor Road		6.50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:	414 854 854 0.99	216 1076 1076 0.94
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State: TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl) Major LT Shared Lane Prob. of Queue-Free State:	437 1061 1061 0.99 3400 1700	432 1067 1067 0.95
Step 3: TH from Minor Street	WB	 EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Capacity Adjustment Factor due to Impeding Movements Movement Capacity: (pcph) Prob. of Queue-Free State:	906 365 0.94 342 1.00	914 362 0.94 340 1.00
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Major LT, Minor TH	878 328	896 321
Impedance Factor: Adjusted Impedance Factor: Capacity Adjustment Factor	0.94 0.95	0.94 0.95
due to Impeding Movements Movement Capacity: (pcph)	0.89 293	0.94

HCS:	Unsignalized	Intersections	Release	2.1d	HA_ADOA.HCO	Page	3		

Intersection Performance Summary

Mov	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph) (Avg. Total Delay sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB EB EB	L T R	15 1 66	303 2 340 2 1076 2	721	5.6	0.4	В	5.6
WB WB WB	L T R	36 1 7	293 342 854	328	12.7	0.5	С	12.7
NB SB	L L	57 8	1067 1061		3.6 3.4	0.0	A A	0.4

Intersection Delay = 1.1 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADOP.HCO Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street (E-W) Hotel Access

Major Street Direction... NS

Length of Time Analyzed... 60 (min) Analyst..... Greg Date of Analysis..... 5/3/99

Other Information.....Year 2010 No Project Conditions PM Pk

Two-way Stop-controlled Intersection

	Northbound			Southbound				Ea	stbou	Westbound				
	L	${f T}$	R	L	\mathbf{T}		R	L	${f T}$	R	L	\mathbf{T}		R
													_	
No. Lanes	1	1 <	0	0	> 2	<	0	0	> 1	< 0	0	> 1	<	0
Stop/Yield			N	1			N							
Volumes	69	373	53	9	3'	76	44	37	1	134	36		1	6
PHF	1	1	1	1	-	1	1	1	1	. 1	1		1	1
Grade		0				0			C	1			0	
MC's (%)														
SU/RV's (%)														
CV's (%)														
PCE's	1.10			1.10)			1.10	1.10	1.10	1.10	1.1	0 1	10

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
	400 868 868 0.99	1084
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State: TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl) Major LT Shared Lane Prob. of Queue-Free State:	1700	420 1081 1081 0.93
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Capacity Adjustment Factor	898 369	902 367
due to Impeding Movements Movement Capacity: (pcph) Prob. of Queue-Free State:	0.92 339 1.00	0.92 338 1.00
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Major LT, Minor TH	854 339	879 328
Impedance Factor: Adjusted Impedance Factor: Capacity Adjustment Factor	0.92 0.94	0.92 0.94
due to Impeding Movements Movement Capacity: (pcph)	0.81 274	0.93

Intersection Performance Summary

Mov	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph).(Avg. Total Delay sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB EB EB	L T R	41 1 147	338	> > 692 >	7.2	1.3	В	7.2
WB WB WB	L T R	40 1 7	339	> > 306 >	14.0	0.6	С	14.0
NB SB	L L	76 10	1081 1074		3.6 3.4	0.1	A A	0.5 0.1

Intersection Delay = 1.9 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADPA.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street

(E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min)

Analyst..... Greg
Date of Analysis..... 5/3/99

Other Information.....Year 2010 W/ Project Conditions AM Pk

Two-way Stop-controlled Intersection

=========	=====			-===	===:	===	====		====	===	======	====	===	===	====
	Nor	thbou	Southbound				Ea	stbo	und		Westbound				
	L	${f T}$	R	L	${f T}$		R	L	${f T}$		R	L	7		R
No. Lanes	1	1 <	0	0	> 2	<	0	0	> 1	<	0	0	> 1	_ <	0
Stop/Yield			N				N								
Volumes	52	439	62	24	4	35	27	14		1	60	34	:	1	13
PĦF	1	1	1	1		1	1	1		1	1	1		1	1
Grade		0				0				0				0	
MC's (%)	i i														
SU/RV's (%)															
CV's (%)															
PCE's	1.10			1.10				1.10	1.1	0 1	.10	1.10	1.	10	1.10

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor	6.00	3.30
Left Turn Minor Road	6.50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:	470 800 800 0.98	231 1058 1058 0.94
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State: TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl) Major LT Shared Lane Prob. of Queue-Free State:	501 989 989 0.97 3400 1700	462 1033 1033 0.94
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Capacity Adjustment Factor	1008 323	1026 316
due to Impeding Movements Movement Capacity: (pcph) Prob. of Queue-Free State:	0.92 296 1.00	0.92 289 1.00
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Major LT, Minor TH	982 286	1002 278
Impedance Factor: Adjusted Impedance Factor: Capacity Adjustment Factor	0.91 0.93	0.91
due to Impeding Movements Movement Capacity: (pcph)	0.87 250	0.92 255

Intersection Performance Summary

Moveme	Flow Rate nt (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB L EB T EB R	15 1 66	255 289 1058	> 658	6.2	0.4	В	6.2
WB L WB T WB R	37 1 14	250 296 800	> 308	14.1	0.7	С	14.1
NB L SB L	57 26	1033 989		3.7	0.0	A A	0.3

Intersection Delay = 1.2 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADPP.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street
Major Street Direction NS

(E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min)

Date of Analysis..... 5/3/99

Other Information.....Year 2010 W/ Project Conditions PM Pk

Two-way Stop-controlled Intersection

=========	=====	=====	====	-====	===	===	====:	-====:	===:		===	===	===	===	====
	Nor	thbou	nd	Sou	ıthb	our	nd	Eas	stbo	1	Westbound			Ē	
	L	T	R	L	\mathbf{T}		R	L	T	R	L		\mathbf{T}		R
						-								-	
No. Lanes	1	1 <	0	0 >	2	<	0	0	> 1	< 0	0	>	1	<	0
Stop/Yield			N			25	N								
Volumes	69	415	92	48	42	7	44	37		1 134	1	45		1	41
PHF	1	1	1	1		1	1	1		1 :	1	1		1	1
Grade		0				0				0				0	
MC's (%)															
SU/RV's (%)															
CV's (%)				ļ											
PCE's	1.10			1.10				1.10	1.1	0 1.1	0 1.	10	1.1	10	1.10

Adjustment Factors

Vehicle	Cri	cical	Follow-up
Maneuver	Gap	(tg)	Time (tf)
Left Turn Major Road	5	.00	2.10
Right Turn Minor Road	5	.50	2.60
Through Traffic Minor	Road 6	.00	3.30
Left Turn Minor Road	6	.50	3.40

HCS: Unsignalized Intersections Release 2.1d HA_ADPP.HC0 Page 2

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:	461 809 809 0.94	236 1051 1051 0.86
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State: TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl) Major LT Shared Lane Prob. of Queue-Free State:	507 983 983 0.95 3400 1700	471 1022 1022 0.93
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph)	1049 307	1073 298
Capacity Adjustment Factor due to Impeding Movements Movement Capacity: (pcph) Prob. of Queue-Free State:	0.87 266 1.00	0.87 258 1.00
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph)	1005 277	1048 262
Major LT, Minor TH Impedance Factor: Adjusted Impedance Factor:	0.86 0.90	0.86
Capacity Adjustment Factor due to Impeding Movements Movement Capacity: (pcph)	0.77 213	0.85

Intersection Performance Summary

Mov	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)(Avg. Total Delay sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB EB EB	L T R	41 1 147	222 258 1051	> 575	9.3	1.7	В	9.3
WB WB WB	L T R	50 1 45	213 266 809	> 326	15.6	1.4	С	15.6
NB SB	L L	76 53	1022 983		3.8 3.9	0.2	A A	0.5 0.4

Intersection Delay = 2.5 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADBA.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street (E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min)

Analyst..... Greg
Date of Analysis..... 5/3/99

Other Information.....Build-Out No Project Conditions AM Pk

Two-way Stop-controlled Intersection

==========	_====:	=====	====	====	===	===	===	===	====	==	====	==:		====		==	===	==:	===
	Non	nd	Sc	out	hbo	und		Eastbound				Westbound			d				
	L	${f T}$	R	L		T	R		L		T		R	L		Т		R	
								7,=1		-		_				-			-
No. Lanes	1	1 <	0	0	>	2	< 0		0	>	1	<	0	0	>	1	<	0	
Stop/Yield			N					N											
Volumes	53	549	45	-	7	567		27	1	4		1	61	3	33		1		6
PHF	1	1	1	:	1	1		1		1		1	1		1		1		1
Grade		0				0						0					0		
MC's (%)				İ															
SU/RV's (%)																			
CV's (%)																			
PCE's	1.10			1.10	0				1.1	LO	1.1	0	1.10	1.3	10	1.	10	1.	10

Adjustment Factors

Vehicle Maneuver	Critical Gap (tg)	Follow-up Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:	572 710 710 0.99	297 979 979 0.93
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State: TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl) Major LT Shared Lane Prob. of Queue-Free State:	594 893 893 0.99	594 893 893 0.94
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Capacity Adjustment Factor	1226 248	1234 246
due to Impeding Movements Movement Capacity: (pcph) Prob. of Queue-Free State:	0.92 229 1.00	0.92 228 1.00
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Major LT, Minor TH	1200 214	1216 209
Impedance Factor: Adjusted Impedance Factor: Capacity Adjustment Factor	0.92 0.94	0.92 0.94
due to Impeding Movements Movement Capacity: (pcph)	0.88 187	0.93

HCS:	Unsignalized	Intersections	Release 2.1	d HA	_ADBA.HC0	Page	3	

Intersection Performance Summary

Mov	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph) (Avg. Total Delay sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB EB EB	L T R	15 1 67	194 228 979	> 553	7.7	0.6	В	7.7
WB WB WB	L T R	36 1 7	187 : 229 : 710 :	213	21.3	0.9	D	21.3
NB SB	L L	58 8	893 893		4.3	0.1	A A	0.4

Intersection Delay = 1.2 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADBP.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street (E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min)

Analyst..... Greg
Date of Analysis..... 5/3/99

Other Information.....Build-Out No Project Conditions PM Pk

Two-way Stop-controlled Intersection

=======================================													
	No	rthbou		So	uthb	ou	_		stbou		Wes	stbou	nd
		T 	R 	L	T		R	L	T	R	L	T	R
No. Lanes Stop/Yield	1	1 <	0 N	0	> 2	<	0 N	0	> 1	< 0	0 :	1	< 0
Volumes	70	522	53	9	52	26	45	38	1	135	36	1	6
PHF Grade	1	0	1	1		0	1		0	1	1	1	1
MC's (%) SU/RV's (%)													
CV's (%) PCE's	1.10			1 10				1 10	1 10	1 10	1 10	1 10	1 10
ICE 5	1 1 . 10			1.10				11.10	1.10	1.10	11.10	1.10	1.10

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road Right Turn Minor Road	5.00 5.50	2.10
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Worksheet for TWSC Intersection

Conflicting Flows: (vph) 548 286 Potential Capacity: (pcph) 731 992 Movement Capacity: (pcph) 731 992 Prob. of Queue-Free State: 0.99 0.85 Step 2: LT from Major Street SB NB Conflicting Flows: (vph) 575 571 Potential Capacity: (pcph) 912 916 Movement Capacity: (pcph) 912 916 Prob. of Queue-Free State: 0.99 0.92 TH Saturation Flow Rate: (pcphpl) 3400 RT RT Saturation Flow Rate: (pcphpl) 1700 Rajor LT Shared Lane Prob. of Queue-Free State: 0.99 0.99 Step 3: TH from Minor Street WB EB Conflicting Flows: (vph) 1198 1202 Potential Capacity: (pcph) 257 255 Capacity Adjustment Factor 0.90 0.90 Movement Capacity: (pcph) 232 230 Prob. of Queue-Free State: 1.00 1.00 Step 4: LT from Minor Street WB EB	Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) 575 571 Potential Capacity: (pcph) 912 916 Movement Capacity: (pcph) 912 916 Prob. of Queue-Free State: 0.99 0.92 TH Saturation Flow Rate: (pcphpl) 3400 RT Saturation Flow Rate: (pcphpl) 1700 Major LT Shared Lane Prob. of Queue-Free State: 0.99 Step 3: TH from Minor Street WB EB Conflicting Flows: (vph) 1198 1202 Potential Capacity: (pcph) 257 255 Capacity Adjustment Factor due to Impeding Movements 0.90 0.90 Movement Capacity: (pcph) 232 230 Prob. of Queue-Free State: 1.00 1.00 Step 4: LT from Minor Street WB EB Conflicting Flows: (vph) 1154 1180 Potential Capacity: (pcph) 227 220 Major LT, Minor TH Impedance Factor: 0.90 0.90 Adjusted Impedance Factor: 0.90 0.90 Capacity Adjustment Factor due to Impeding Movements 0.78 0.91	Potential Capacity: (pcph) Movement Capacity: (pcph)	731 731	992 992
Conflicting Flows: (vph) 575 571 Potential Capacity: (pcph) 912 916 Movement Capacity: (pcph) 912 916 Prob. of Queue-Free State: 0.99 0.92 TH Saturation Flow Rate: (pcphpl) 3400 3400 RT Saturation Flow Rate: (pcphpl) 1700 1700 Major LT Shared Lane Prob. of Queue-Free State: 0.99 0.99 Step 3: TH from Minor Street WB EB Conflicting Flows: (vph) 1198 1202 Potential Capacity: (pcph) 257 255 Capacity Adjustment Factor 0.90 0.90 Movement Capacity: (pcph) 232 230 Prob. of Queue-Free State: 1.00 1.00 Step 4: LT from Minor Street WB EB Conflicting Flows: (vph) 1154 1180 Potential Capacity: (pcph) 227 220 Major LT, Minor TH 1199 1154 1180 Potential Capacity: (pcph) 227 220 Major LT, Minor TH 1190 0.90	Step 2: LT from Major Street	SB	
Step 3: TH from Minor Street WB EB Conflicting Flows: (vph) 1198 1202 Potential Capacity: (pcph) 257 255 Capacity Adjustment Factor due to Impeding Movements 0.90 0.90 Movement Capacity: (pcph) 232 230 Prob. of Queue-Free State: 1.00 1.00 Step 4: LT from Minor Street WB EB Conflicting Flows: (vph) 1154 1180 Potential Capacity: (pcph) 227 220 Major LT, Minor TH Impedance Factor: 0.90 0.90 Adjusted Impedance Factor: 0.92 0.92 Capacity Adjustment Factor due to Impeding Movements 0.78 0.91	Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State: TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl) Major LT Shared Lane Prob. of Oueue-Free State:	912 912 0.99 3400 1700	571 916 916
Potential Capacity: (pcph) 257 255 Capacity Adjustment Factor due to Impeding Movements 0.90 0.90 Movement Capacity: (pcph) 232 230 Prob. of Queue-Free State: 1.00 1.00 Step 4: LT from Minor Street WB EB Conflicting Flows: (vph) 1154 1180 Potential Capacity: (pcph) 227 220 Major LT, Minor TH Impedance Factor: 0.90 0.90 Adjusted Impedance Factor: 0.92 0.92 Capacity Adjustment Factor due to Impeding Movements 0.78 0.91			EB
due to Impeding Movements0.900.90Movement Capacity: (pcph)232230Prob. of Queue-Free State:1.001.00Step 4: LT from Minor StreetWBEBConflicting Flows: (vph)11541180Potential Capacity: (pcph)227220Major LT, Minor TH327220Impedance Factor:0.900.90Adjusted Impedance Factor:0.920.92Capacity Adjustment Factor0.780.91due to Impeding Movements0.780.91	Potential Capacity: (pcph)		
Conflicting Flows: (vph) 1154 1180 Potential Capacity: (pcph) 227 220 Major LT, Minor TH Impedance Factor: 0.90 0.90 Adjusted Impedance Factor: 0.92 0.92 Capacity Adjustment Factor due to Impeding Movements 0.78 0.91	<pre>due to Impeding Movements Movement Capacity: (pcph)</pre>	232	230
Potential Capacity: (pcph) 227 220 Major LT, Minor TH Impedance Factor: 0.90 0.90 Adjusted Impedance Factor: 0.92 0.92 Capacity Adjustment Factor due to Impeding Movements 0.78 0.91	Step 4: LT from Minor Street		
Impedance Factor: 0.90 0.90 Adjusted Impedance Factor: 0.92 0.92 Capacity Adjustment Factor due to Impeding Movements 0.78 0.91	Potential Capacity: (pcph)		
due to Impeding Movements 0.78 0.91	Impedance Factor: Adjusted Impedance Factor:		
	due to Impeding Movements		

Intersection Performance Summary

	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph).(Avg. Total Delay sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB EB EB	L T R	42 1 149	201 2 230 2 992 2	528	10.7	1.9	С	10.7
WB WB WB	L T R	40 1 7	178 2 232 2 731 2	201	23.5	1.0	D	23.5
NB SB	L L	77 10	916 912		4.3 4.0	0.2	A A	0.5 0.1

Intersection Delay = 2.2 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADTA.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street

(E-W) Hotel Access

Major Street Direction.... NS

Length of Time Analyzed... 60 (min) Analyst..... Greg Date of Analysis..... 5/3/99

Other Information.....Build-Out W/ Project Conditions AM Pk

Two-way Stop-controlled Intersection

	Nor	thbou	nd	Sou	thbou	nd	Eas	tbour	nd	Wes	tboun	.d
	L	T	R	L	T	R	L	T	R	L	${f T}$	R
No. Lanes	1	1 <	0	0 >	2 <	0	0 :	1 .	< 0	0 >	1 <	0
Stop/Yield Volumes	53	595	N 62	24	596	N 27	14	1	61	34	1	13
PHF Grade	1	1	1	1	1	1	1	1	1	1	1	1
MC's (%)		U			U			U			Ü	
SU/RV's (%) CV's (%)												
PCE's	1.10			1.10			1.10	1.10	1.10	1.10	1.10	1.10

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State:	626 667 667 0.98	312 962 962 0.93
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph) Potential Capacity: (pcph) Movement Capacity: (pcph) Prob. of Queue-Free State: TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl) Major LT Shared Lane Prob. of Queue-Free State:	1700 0.96	623 865 865 0.93
Step 3: TH from Minor Street	WB	EВ
Conflicting Flows: (vph) Potential Capacity: (pcph) Capacity Adjustment Factor	1326 220	1344 215
due to Impeding Movements Movement Capacity: (pcph) Prob. of Queue-Free State:	0.90 197 0.99	0.90 193 0.99
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph) Potential Capacity: (pcph) Major LT, Minor TH	1300 187	1320 182
Impedance Factor: Adjusted Impedance Factor: Capacity Adjustment Factor	0.89	0.89 0.92
due to Impeding Movements Movement Capacity: (pcph)	0.85 160	0.90 164

HCS:	Unsignalized	Intersections	Release 2.1d	HA_ADTA.HC0	Page 3			

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph).(Avg. Total Delay sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB L EB T EB R	15 1 67	164 > 193 > 962 >	499	8.7	0.7	В	8.7
WB L WB T WB R	37 1 14	160 > 197 > 667 >	202	24.0	1.1	D	24.0
NB L SB L	58 26	865 834		4.5 4.5	0.1	A A	0.3 0.2

Intersection Delay = 1.5 sec/veh

HCS: Unsignalized Intersections Release 2.1d HA_ADTP.HC0 Page 1

Center For Microcomputers In Transportation

University of Florida

512 Weil Hall

Gainesville, FL 32611-2083

Ph: (904) 392-0378

Streets: (N-S) Adams Street (E-W) Hotel Access

Major Street Direction... NS

Length of Time Analyzed... 60 (min)

Analyst..... Greg
Date of Analysis..... 5/3/99

Other Information.....Build-Out W/ Project Conditions PM Pk

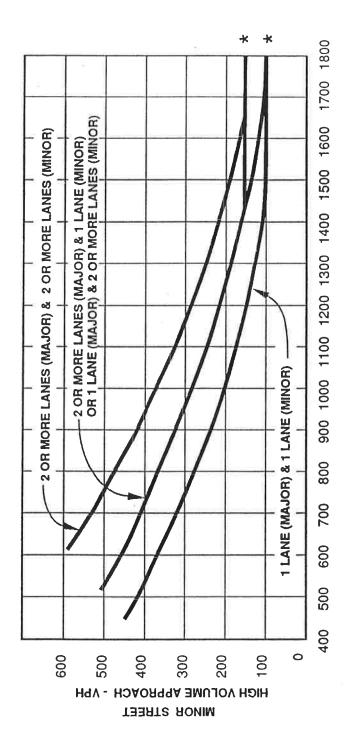
Two-way Stop-controlled Intersection

=========	=====	======	===:		====	===	===	====	====	==	====	===	====	===:	==:	==:	===	===	===
	Nor	thboun	.d	Sc	out	thb	our	nd	E	as	tbou	ınc	1	1	We	st]	bou	no	Ē
	L	T	R	L		T		R	L		\mathbf{T}		R	L		-	Т		R
					2 0		-			_		_				-		-	
No. Lanes	1	1 <	0	0	>	2	<	0	0	>	1	<	0	0		>	1	<	0
Stop/Yield			N					N											
Volumes	70	564	92	48	3	57	7	45	3	8	1		135		45		1		41
PHF	1	1	1	:	1		1	1		1	1		1		1		1		1
Grade		0					0				C)					C	ı	
MC's (%)																			
SU/RV's (%)																			
CV's (%)																			
PCE's	1.10			1.10	C				1.1	0	1.10) 1	10	1.	10	1	.10) [1.10

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	ad 6.00	3.30
Left Turn Minor Road	6.50	3.40

Intersection Performance Summary


Move	ement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph).(Avg. Total Delay sec/veh)	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB EB EB	L T R	42 1 149	143 > 174 > 963 >	423	15.5	2.7	С	15.5
WB WB WB	L T R	50 1 45	137 > 179 > 680 >	220	28.9	2.4	D	28.9
NB SB	L L	77 53	866 835		4.6 4.6	0.2 0.1	A A	0.4

Intersection Delay = 3.5 sec/veh

Appendix 3

TRAFFIC SIGNAL WARRANTS

Peak Hour Volume Warrant (Urban Areas)

MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH

NOTE

150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

La Quinta Corporate Center Peak Hour Volume Warrant

Intersection:Adams Street @ Adams Hotel Access

Major Approach: 2 Lanes

Minor Approach: 1 Lane

Rural Warrants

	AM Peak Hour			PM Peak Hour		
Approach	Existing	2010+Project	2020+Project	Existing	2010+Project	2020+Project
Southbound	307	486	647	304	519	029
Northbound	323	553	720	327	576	727
Eastbound	7.4	74	75	170	171	173
Meets 1-Hr. Warrant	2	oN.	o _N	<u>0</u> 2	No	Yes

Intersection:Adams Street @ Industrial Street

Major Approach: 2 Lanes

Minor Approach: 1 Lane

Rural Warrants

	AM Peak Hour			PM Peak Hour	74	
Approach	Existing	2010+Project	2020+Project	Existing	2010+Project	2020+Project
Southbound		540	726		209	719
Northbound		481	654		518	269
Eastbound		32	32		86	86
Meets 1-Hr. Warrant		%	No		S N	2

Intersection:Dune Palms Road @ Industrial Street

Major Approach: 2 Lanes

Minor Approach: 1 Lane

Rural Warrants

	AM Peak Hour			PM Peak Hour		
Approach	Existing	2010+Project	2020+Project	Existing	2010+Project	2020+Project
Southbound Northbound Eastbound		769 605 36	1395 1109 39	,	317 424 125	723 975 125
Meets 1-Hr. Warrant		No	No		<u>8</u>	Yes

Planning Level Daily Traffic Signal Warrants (Based on Estimated Average Daily Traffic)

Urban ☐ Rural ☐ Major Street Speed Limit		equirements ted ADT
1. Minimum Vehicular Satisified Not Satisified	Vehicles per day on major street (total of both approaches)	Vehicles per day on higher-volume minor-street approach (one direction only)
Number of lanes for moving traffic on each approach Major Street Minor Street 1	Urban Rural 8,000 5,600 9,600 6,720 9,600 6,720 8,000 5,600	Urban Rural 2,400 1,680 2,400 1,680 3,200 2,240 3,200 2,240
2. Interruption of Continuous Traffic Satisified Not Satisified	Vehicles per day on major street (total of both approaches)	Vehicles per day on higher-volume minor-street approach (one direction only)
Number of lanes for moving traffic on each approach Major Street Minor Street 1	<u>Urban</u> <u>Rural</u> 12,000 8,400 14,400 10,080 14,400 10,080 12,000 8,400	Urban Rural 1,200 850 1,200 850 1,600 1,120 1,600 1,120
3. Combination of Warrants Satisfied Not Satisifed No one warrant satisified but following warrants fulfilled 80% or more: 1 2	2 Warrants	2 Warrants

Source: "Traffic Manual" State of California Revised 4/20/77

Notes: 1. Left turn movements from the major street may be included with minor street volumes if a separate signal phase is to be provided for the left-turn movement.

2. To be used only for NEW INTERSECTIONS or other locations where actual traffic volumes cannot be counted.

Signal Warrants

Intersection	Major	Approac	h Lanes	Major I	eg Vol	Minor Leg	Warra	ant 1	Warra	ınt 2	Minor	Major
	Speed	Major	Minor	Leg 1	Leg 2	Volume	Major	Minor	Major	Minor	Approach	Approach
Existing											- 12	
Adams Hotel Acc	35	1	1	7,050	8,470	3,330	No	No	No	Yes	1,665	7,760
Adams Street	(0						0.97	0.694	0.647			
Build-Out					18							
Adams Hotel Acc	35	2	1	16,350	16,090	3,330	Yes	No	Yes	Yes	1,665	16,220
Adams Street								0.694				
Industrial Collector	35	2	1	16,350	16,350	1,070	Yes	No	Yes	No	535	16,350
Adams Street								0.223		0.446		
Industrial Collector	35	2	1	19,930	19,930	1,500	Yes	No	Yes	No	750	19,930
Dune Palms Road		kë.						0.313		0.625		

Appendix 4

HCM SIGNALIZED INTERSECTION METHODOLOGY AND WORKSHEETS

HCM MethodologyHCS Worksheets

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111 (N-S) Adams Street

(N-S) Adams Street File Name: 11 ADEA.HC9

Analyst: Greg

4-29-99 AM Pk

Area Type: Other

Comment: Existing Conditions

=========	====:	=====	=====	=====		=====	=====	=====	=====	=====	=====	====
	E a	astbou	ınd	Wes	stbour	nd	Noi	thbou	ınd	Sou	ıthboı	ınd
	L	${f T}$	R	L,	$_{\epsilon}$ T	R	L	T	R	L	${f T}$	R
No. Lanes	1	2 .	<	1	2 <	<	1	1 <		1	1	1
Volumes	35	458	34	24	719	50	90	223	13	65	163	100
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	12.0
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00

			S	ignal	Opera	atio	ns				
Pha	se Combination	n 1	2	3	4	1		5	6	7	8
EB	Left	*				NB	Left	*			
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*				Peds				
WB	Left	*				SB	Left	*			
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*				Peds				
NB	Right					EB	Right				
SB	Right	*	*			WB	Right				
Gre	en 5	0.0A 47	.OA			Gre	en	6.0A	16.0A		
Yel	low/AR 4	1.0 4	1.0			Yel	low/AR	4.0	4.0		
Сус	le Length: 90) secs	Phase	e comb	oinat:	ion	order:	#1 #2	#5 #6		

	_		Intersect		ormance :	Summary			
	Lane	Group:	Adj Sat	V/C	g/C			Approad	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
									** ** **
EB	L	110	1656	0.317	0.067	26.4	D	8.7	В
	TR	1840	3450	0.281	0.533	7.5	В		
WB	L	110	1656	0.217	0.067	25.9	D	8.9	В
	TR	1841	3452	0.438	0.533	8.4	В		
NB	L	129	1656	0.699	0.078	36.3	D	29.8	D
	TR	327	1729	0.723	0.189	27.4	D		
SB	L	129	1656	0.505	0.078	28.4	D	16.9	С
	${f T}$	329	1743	0.495	0.189	22.1	С		
	R	1219	1482	0.082	0.822	1.0	A		
		Tnte	ersection	Delay =	13 5 00	c/Wah Int	arcac.	tion Inc	- D

Intersection Delay = 13.5 sec/veh Intersection LOS = B Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.514

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Adams Street File Name: 11 ADEP.HC9

Analyst: Greg Area Type: Other

4-29-99 PM Pk

Comment: Existing Conditions

	Eastbound	Westbound	Northbound	Southbound
	L T R	L T R	L T R	L T R
No. Lanes	1 2 <	1 2 <	1 1 <	1 1 1
Volumes	45 809 126	III	75 154 24	
Lane W (ft)	12.0 12.0	12.0 12.0	12.0 12.0	12.0 12.0 12.0
RTOR Vols Lost Time	0	0	0	0
LOSC TIME	13.00 3.00 3.00	3.00 3.00 3.00	3.00 3.00 3.00	3.00 3.00 3.00
		Signal Operation	ons	
Phase Combi	nation 1 2	3 4	5	6 7 8
EB Left	*	NB	Left *	
Thru	*		Thru	*
Right	*		Right	*
Peds	*	4.5	Peds	
WB Left Thru	*	SB	Terc	*
Right	*		Thru Right	*
Peds	*		Peds	
NB Right		EB	Right	
SB Right	* *	WB	_	
Green	5.0A 46.0A	Gre	een 11.0A 12	.0A
Yellow/AR	4.0 4.0		•	.0
Cycle Lengt	h: 90 secs Ph	ase combination	order: #1 #2 #	5 #6

	Lane	Group:	Intersect Adj Sat	cion Perf v/c	ormance : g/C	Summary		Approac	ch:			
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS			
EB	L	110	1656	0.408	0.067	27.4	D	10.4	В			
	TR	1784	3416	0.550	0.522	9.6	В					
WB	L	110	1656	0.362	0.067	26.9	D	10.0	В			
	TR	1787	3421	0.504	0.522	9.2	В					
NB	L	221	1656	0.340	0.133	23.2	C	28.3	D			
	TR	247	1708	0.721	0.144	30.4	D					
SB	L	221	1656	0.743	0.133	32.7	D	27.3	D			
	T	252	1743	0.643	0.144	27.3	D					
	R	1136	1482	0.030	0.767	1.6	Α					
		Inte	rsection	Delay =	14.3 se	c/veh Int	cersec	tion LOS	= B			
T +	m 4 //	~	400	~ '	/	/ \	0 - 0	_				

Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.598

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Adams Street

Analyst: Greg File Name: 11_ADOA.HC9

Area Type: Other

4-29-99 AM Pk

Comment: Year 2010 No Proj Conditions

	Eastbound					nd	Noi	thbou	ınd	Southbound		
	L	${f T}$	R	L .	\mathbf{T}	R	L	${f T}$	R	L	T	R
No. Lanes	1	2 <	(1	2 <	(2	2	1	2	2 <	(
Volumes	95	696	49	38	1107	78	131	326	19	112	236	164
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00

	Signal Operations											
Pha	se Combination	1	2	3	4	1		5	6	7	8	
EB	Left	*				NB	Left	*				
	Thru		*				Thru		*			
	Right		*				Right		*			
	Peds		*				Peds					
WB	Left	*				SB	Left	*				
	Thru		*				Thru		*			
	Right		*				Right		*			
	Peds		*				Peds					
NB	Right	*	*			EB	Right					
SB	Right					WB	Right					
Gree		.0A 49				Gre	en	5.0A	14.0A			
Yel	low/AR 4	.0 4	. 0			Yel	low/AR	4.0	4.0			
Сус.	le Length: 90	secs	Phase	comb	oinat:	ion	order:	#1 #2	2 #5 #6			

	Lane	Group:	Intersecti Adj Sat	ion Perf	ormance g/C	Summary		Approac	Approach:		
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS		
EB	L	129	1656	0.738	0.078	39.2	D	10.9	В		
	TR	1918	3452	0.408	0.556	7.5	В				
WB	L	129	1656	0.295	0.078	25.7	D	10.0	В		
	TR	1918	3452	0.649	0.556	9.5	В				
NB	L	221	3312	0.611	0.067	29.8	D	24.4	C		
	${f T}$	581	3486	0.589	0.167	23.5	C				
	R	1235	1482	0.015	0.833	0.8	A				
SB	L	221	3312	0.521	0.067	28.0	D	27.8	D		
	TR	545	3272	0.770	0.167	27.8	D				
		T +			4	/ 1 -					

Intersection Delay = 15.5 sec/veh Intersection LOS = C

Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.677

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

Analyst: Greg

(N-S) Adams Street File Name: 11 ADOP.HC9

Area Type: Other 4-29-99 PM Pk

Comment: Year 2010 No Proj Conditions

	====:	=====			=====	=====	=====				=====	====
Eastbound				Wes	tbour	nd	Noi	thbou	ınd	Southbound		
	L	${f T}$	R	L.	T	R	L	${f T}$	R	L	${f T}$	R
No. Lanes	1	2 .	(1	2 .	<	2	2	1	2	2 <	•
Volumes	112	1230	183	62	1158	162		233	35		235	69
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00

Signal Operations												
Phase Combination	1	2	3	4			5	6	7	8		
EB Left	*				NB	Left	*					
Thru		*				Thru		*				
Right		*				Right		*				
Peds		*				Peds		*				
WB Left	*				SB	Left	*					
Thru		*				Thru		*				
Right		*				Right		*				
Peds		*				Peds		*				
NB Right	*	*			EB	Right						
SB Right					WB	Right						
Green 8	.OA 48	.0A			Gre	en	8.0A	10.0A				
Yellow/AR 4.0 4.0 Yellow/AR 4.0 4.0								4.0				
Cycle Length: 90	ion	order:	#1 #2	2 #5 #6								

			Summary						
	Lane	Group:	Adj Sat	v/c	g/C	-		ch:	
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
									555
EB	L	166	1656	0.676	0.100	32.3	D	13.8	В
	TR	1861	3419	0.797	0.544	12.4	В		
WB	L	166	1656	0.374	0.100	25.1	D	11.9	В
	TR	1863	3422	0.744	0.544	11.3	В		
NB	L	331 -	3312	0.338	0.100	24.6	C	23.1	C
	${f T}$	426	3486	0.575	0.122	25.5	D		
	R	1186	1482	0.030	0.800	1.2	Α		
SB	L	331	3312	0.803	0.100	34.7	D	32.6	D
	TR	412	3368	0.775	0.122	30.9	D		
		Tn+	orgoation I	701227	160 00	a /reah Too		T O G	~ ~

Intersection Delay = 16.8 sec/veh Intersection LOS = C Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.781

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Adams Street

Analyst: Greg

File Name: 11_ADPA.HC9

Area Type: Other

4-29-99 AM Pk

Comment: Year 2010 W/ Proj Conditions

=========	=====	=====		=====		=====	=====	====		=====	=====	====
	Wes	Westbound			Northbound			Southbound				
	L	${f T}$	R	L.	T	R	L	T	R	L	T	R
No. Lanes	1	2 .	<	1	2	<	2	2	1	2	2 <	
Volumes	138	820	49	60	1156	87	131	338	76	129	238	176
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
				Signa	al Ope	eratio	ons					
Phase Combin	nation	n 1	2	3	_ 4	4			5	6	7	8
EB Left		*				NB	Left		*			
Thru			*				Thri	1		*		

Phase Combinat	ion 1	2	3	4			5	6	7	8
EB Left	*				NB	Left	*			
Thru		*				Thru		*		
Right		*				Right		*		
Peds		*				Peds				
WB Left	*				SB	Left	*			
Thru		*				Thru		*		
Right		*				Right		*		
Peds		*				Peds				
NB Right	*	*			EB	Right				
SB Right					WB	Right				
Green	9.0A 4	5.0A			Gre	en	5.0A	14.0A		
Yellow/AR	4.0	4.0			Yel	low/AR	4.0	4.0		
Cycle Length:	90 secs	Phase	combi	inat:	ion	order:	#1 #2	#5 #6		

	Intersection Performance Summary													
	Lane	Group:	Adj Sat	v/c	g/C			Approad	ch:					
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS					
EB	L	184	1656	0.750	0.111	35.5	D	12.7	В					
	TR	1805	3457	0.505	0.522	9.2	В							
WB	\mathbf{L}	184	1656	0.326	0.111	24.2	C	12.3	В					
	TR	1802	3450	0.724	0.522	11.7	В							
NB	L	221	3312	0.611	0.067	29.8	D	22.2	С					
	${f T}$	581	3486	0.611	0.167	23.8	C							
	R	1235	1482	0.062	0.833	0.9	A							
SB	L	221	3312	0.602	0.067	29.6	D	29.2	D					
	TR	544	3264	0.800	0.167	29.0	D							
		Tnt	ersection	Delav =	16 7 00	c/sch Int	-argac	tion IOS	- 0					

Intersection Delay = 16.7 sec/veh Intersection LOS = C Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.733

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

Analyst: Greg

Area Type: Other

(N-S) Adams Street File Name: 11_ADPP.HC9

4-29-99 PM Pk

Comment: Year 2010 W/ Proj Conditions

====		
Southbound		
R		
109		
0		
3.00		
_		
8		

Pnas	se combinatio	on T	2	3	4			2	0	/	0
EB	Left .	*				NB	Left	*			
	Thru		*				Thru			*	
	Right		*				Right			*	
	Peds		*				Peds				
WB	Left	*				SB	Left	*	*		
	Thru		*				Thru		*	*	
	Right		*				Right		*	*	
	Peds		*				Peds				
NB	Right	*	*			EB	Right				
SB	Right			8		WB	Right				
Gree	en	8.0A	50.0A			Gre	en	4.0A	5.0A	7.0A	
Yel.	low/AR	4.0	4.0			Yel	low/AR	4.0	0.0	4.0	
Cyc.	le Length: !	90 sec	s Phase	combi	nat:	ion	order:	#1 #2	#5 #6	#7	

	_	~	Intersect			Summary		3	_1			
	Lane	Group:	Adj Sat	V/C	g/C			Approad	cn:			
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS			
EB	L	166	1656	0.942	0.100	64.3	F	16.7	C			
	TR	1939	3422	0.810	0.567	12.0	В					
WB	L	166	1656	0.833	0.100	45.2	E	14.8	В			
	TR	1939	3422	0.817	0.567	12.2	В		8			
NB	L	184	3312	0.777	0.056	39.6	D	32.7	D			
	${f T}$	310	3486	0.829	0.089	37.7	D					
	R	1169	1482	0.062	0.789	1.4	A					
SB	L	368	3312	0.755	0.111	31.0	D	29.9	D			
	TR	480	3324	0.771	0.144	29.1	D					
		Inte	ersection	Delay =	19.5 se	ec/veh In	tersec	tion LOS	= C			

Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.825

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111 (N-S) Adams Street

Analyst: Greg File Name: 11 ADBA.HC9 Area Type: Other 4-29-99 AM Pk

Comment: Build-Out No Proj Conditions												
========	====== Fa	===== astbou	====:	===== Was	==== stbour	.====:	===== Nor	thbou	ınd	 GO1	===== ıthboı	nd
	L	T	R	L	T	R	L	T	R	L	T	R
No. Lanes	1	3 <		1	3 •		2	2	1	2	2 <	(
Volumes		1020	69		1611	106			26		313	219
Lane W (ft)	12.0	12.0	0	12.0	12.0	0	12.0	12.0	12.0	12.0	12.0	0
RTOR Vols Lost Time	2 00	3.00	2 00	2 00	2 00	3 00	2 00	2 00	2 00	2 00	2 00	2 00
LOSC TIME	13.00	3.00	3.00	3.00 	3.00	3.00	3.00 	3.00	3.00	3.00	3.00	3.00
				Signa	al Ope	eratio	ons					
Phase Combi	natior	ı 1	2	3	_	1			5	6	7	8
EB Left		*				NB		_	*			
Thru			*				Thru			*		
Right			*				Righ			*		
Peds WB Left		*	*			SB	Peds Left		*	*		
Thru		.,	*			SB	Thru			*		
Right			*				Righ			*		
Peds			*				Peds		W.	*		
NB Right		*	*			EB	Righ	nt				
SB Right		_	_			WB	_					
Green		5.0A 4					een		0A 18			
Yellow/AR Cycle Lengt			4.0	200 0	omb i n		llow/ <i>l</i> orde			.0		
cycle henge) secs		ase Co		201011	ordei	. #±	#⊿ # 			

Secretaria (Tro)	Lane Mvmts	Group: Cap	Intersect: Adj Sat Flow	ion Perf V/c Ratio	ormance S g/C Ratio	Summary Delay	LOS	Approad Delay	ch: LOS		
EB	L TR	129 2648	1656 5180	0.831	0.078	49.6 9.1	E B	12.4	В		
WB	L TR	129 2648	1656 5181	0.396	0.078	26.6 11.6	D B	12.0	В		
NB	L T	221 736	3312 3486	0.861	0.067	45.6 21.9	E C	27.8	D		
SB	R L	1235 221	1482 3312	0.021 0.675	0.833 0.067	0.8 31.9	A D	27.9	D		
	TR	691 Inte	3271 ersection	0.810 Delay =	0.211 16.8 sec	26.8 c/veh Int	D ersec	tion LOS	= C		
Lost	Time/	Cycle, L	= 12.0 se	ec Cri	tical v/c	z(x) =	0.75	9			

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111 Analyst: Greg (N-S) Adams Street File Name: 11_ADBP.HC9

Area Type: Other 4-29-99 PM Pk

Comment: Build-Out No Proj Conditions

========	==========	=========	===========	===========
	Eastbound	Westbound	Northbound	Southbound
	L T R	L T R	L T R	L T R
No. Lanes	1 3 <	1 3 <	2 2 1	2 2 <
Volumes	127 1801 257	83 1683 222	153 303 48	348 311 85
Lane W (ft)	12.0 12.0	12.0 12.0	12.0 12.0 12.0	12.0 12.0
RTOR Vols		'	0	0
Lost Time	3.00 3.00 3.00	3.00 3.00 3.00	3.00 3.00 3.00	3.00 3.00 3.00
		Signal Operati		
Phase Combi		3 4	5	6 7 8
EB Left	*	NB		
Thru	*		Thru	*
Right	*		Right	*
Peds	*	an	Peds	*
WB Left	*	SB		* *
Thru	*		Thru	* *
Right	*		Right	^ ^
Peds NB Right	* *	EB	Peds	
SB Right	, ,	WB	_	
Cross	7 03 40 03		•	03 0 03

Green 7.0A 48.0A Green 5.0A 5.0A 9.0A
Yellow/AR 4.0 4.0 Yellow/AR 4.0 0.0 4.0
Cycle Length: 90 secs Phase combination order: #1 #2 #5 #6 #7

			Intersect	tion Perf	ormance	Summary				
	Lane	Group:	Adj Sat	v/c	g/C	_		Approa	ch:	
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS	
EB	L	147	1656	0.863	0.089	51.7	E	14.2	В	
-	TR	2794	5131	0.810	0.544	12.1	В			
WB	L	147	1656	0.564	0.089	29.0	D	11.7	В	
	TR	2797	5138	0.749	0.544	11.0	В			
NB	L	221	3312	0.716	0.067	33.7	D	31.1	D	
	\mathbf{T}	387	3486	0.821	0.111	34.3	D			
	R	1153	1482	0.042	0.778	1.5	A			
SB	L	405	3312	0.884	0.122	39.2	D	32.4	D	
	TR	562	3374	0.740	0.167	26.6	D			
		Tnt	argaction	Delaw =	17 2 00	oc/wah In	targag	tion Ing		

Intersection Delay = 17.2 sec/veh Intersection LOS = C Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.828

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Adams Street

Analyst: Greg

File Name: 11_ADTA.HC9

Area Type: Other

4-29-99 AM Pk

Comment: Build-Out W/ Proj Conditions

=========	====:	=====	=====		=====	=====	=====	=====	=====	=====		====
	Εá	astbou	ınd	Westbound			Northbound			Sou	ıthbou	ınd
T.	L	${f T}$	R	L.	${f T}$	R	L	${f T}$	R	L	T	R
No. Lanes	1	3 .	<	1	3	<	2	2	1	2	2 <	
Volumes	150	1144	69	73	1659	115	184	442	83	162	315	231
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
				Cian:	a = n	arati/	າກຕ					

	Signal Operations											
Phas	se Combination	. 1	2	3	4			5	6	7	8	
EB	Left	*				NB.	Left	*				
	Thru		*				Thru		*			
	Right		*				Right		*			
	Peds		*				Peds		*			
WB	Left	*				SB	Left	*				
	Thru		*				Thru		*			
	Right		*				Right		*			
	Peds		*				Peds		*			
NB	Right	*	*			EB	Right					
SB	Right					WB	Right					
Gree	en 9	.0A 42	.0A			Gre	en	5.0A	18.0A			
Yel	Low/AR 4	.0 4	. 0			Yel:	low/AR	4.0	4.0			
Сус	le Length: 90	secs	Phase	comb	inati	ion (order:	#1 #2	#5 #6			

	Intersection Performance Summary Lane Group: Adj Sat v/c g/C Approach											
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS			
EB	L	184	1656	0.815	0.111	41.3	E	13.9	В			
	TR	2477	5185	0.538	0.478	10.9	В					
WB	L	184	1656	0.397	0.111	24.8	С	14.4	В			
	TR	2474	5179	0.788	0.478	14.0	В					
NB	L	221	3312	0.861	0.067	45.6	E	25.8	D			
	${f T}$	736	3486	0.630	0.211	22.1	C					
	R	1235	1482	0.067	0.833	0.9	Α					
SB	L	221	3312	0.756	0.067	36.0	D	29.7	D			
	TR	689	3265	0.831	0.211	27.9	D					
		Tnt.	ersection	Delav =	18 2 500	7/Weh Int	argaci	tion LOS	= C			

Intersection Delay = 18.2 sec/veh Intersection LOS = C

Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.808

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Adams Street

Analyst: Great Area Type: (Comment: Bui	File Name: 11_ADTP3.HC9 4-29-99 PM Pk Lons										
	Eastbou L T			tbour T		Nor L	thbou T	nd R	Sou L	ıthbou T	ınd R
No. Lanes Volumes Lane W (ft) RTOR Vols	1 3 1 172 1882 12.0 12.0	257		3 (1850 12.0		2 153 12.0	315			2 319 12.0	
Lost Time	3.00 3.00	3.00 3	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
			Signa	al Ope	eratio	ons					
Phase Combin	nation 1	2	3	4	1	T - E4		5 *	6	7	8
EB Left	*	*			NB	Left Thru	_	^		*	
Thru Right		*				Righ				*	
Peds		*				Peds					
WB Left	*				SB			*	*		
Thru		*				Thru			*	*	
Right		*			1	Righ			*	*	
Peds		*				Peds					
NB Right	*	*			EB	Rigl	nt				
SB Right					WB	Rigl					
Green	9.0A					een				9.0A	
Yellow/AR	4.0					llow/				4.0	
Cycle Length	n: 90 sec	s Phas	se co	ombina	ation	orde:	r: #1	#2#	5 #6	#7 	
		tersect					mmary				
Lane (Mvmts		dj Sat Flow					Delay	LO		pproa elay	

Intersection Performance Summary											
	Lane	Group:	Adj Sat	v/c	g/C			Approac	ch:		
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS		
EB	L	184	1656	0.935	0.111	60.0	E	18.0	C		
	TR	2682	5135	0.877	0.522	14.9	В				
WB	L	184	1656	0.870	0.111	48.2	E	16.4	C		
	TR	2683	5137	0.860	0.522	14.2	В				
NB	L	221	3312	0.716	0.067	33.7	D	30.8	D		
	T	387	3486	0.855	0.111	37.0	D				
	R	1153	1482	0.075	0.778	1.5	A				
SB	L	405	3312	0.917	0.122	43.3	E	36.4	D		
	TR	557	3340	0.835	0.167	30.9	D				
		Inte	ersection	Delay =	20.9 se	ec/veh Int	tersec	tion LOS	= C		
T	G //	~ T	100			1 - 1 1	0.00	7			

Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.887

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Main Access

Analyst: Greg

File Name: 11_MA0A.HC9

Area Type: Other

4-29-99 AM Pk

Comment: Year 2010 No Proj Conditions

	E	astbou	ınd	We	stbour	nd	No:	rthbo	und	So	uthboi	ınd
	L	T	R	L	T	R	L	T	R	L	T	R
No. Lanes	1	2 (<	1	2	<		> 1	1		> 1	1
Volumes	1	661	92	244	1175	1	44	1	11	8 13	1	1
Lane W (ft)	12.0	12.0		12.0	12.0			12.0	12.	0	12.0	12.0
RTOR Vols			0			C				0		0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.0	0 3.00	3.00	3.00
			_	_	al Ope	. 1	.ons			_		
Phase Combi	natio		2	3	4	4			5	6	7	8
EB Left		*				NE				*		
Thru			*				Thr			*		
Right			*				Rig		_	*		
Peds		*	*				Ped		*	*		
WB Left		^	*			SE			*			
Thru Right			*				Thr Rig		*			
Peds			*			Ü	Ped		*	*		
NB Right		*	*			E						
SB Right		*	*			WE	_					
Green	1	6.0A 4	48 NA				reen		0A	5.0A		
Yellow/AR		4.0	4.0				ellow/			4.0		
Cycle Lengt		0 seca		ase c	ombin	70.0	orde			#5 #6		

			Intersect	ormance	Summary				
	Lane	Group:	Adj Sat	V/c	g/C	_		Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
							.= .= .=		
EB	L	313	1656	0.003	0.189	19.1	С	8.0	В
	TR	1863	3422	0.425	0.544	7.9	В		
WB	L	313	1656	0.780	0.189	30.6	D	13.3	В
	TR	1898	3486	0.651	0.544	9.9	В		
NB	LT	111	1662	0.406	0.067	27.4	D	8.2	В
	R	1235	1482	0.096	0.833	0.9	A		
SB	\mathtt{LT}	111	1666	0.126	0.067	25.6	D	23.9	С
	R	1284	1482	0.001	0.867	0.5	A		
		Inte	ersection 1	Delay =	11.3 se	ec/veh Int	cersec	tion LOS	= B
Lost	Time/	Cycle, L	= 12.0 se	ec Cri	tical v/	/c(x) =	0.62	0	

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Main Access Analyst: Greg File Name: 11_MA0P.HC9

4-29-99 PM Pk Area Type: Other

Comment: Year 2010 No Proj Conditions

=========	=====		=====	=====	=====		=====	=====			=====	
	Ea	Eastbound			stbour	nd	Nor	thbou	ınd	Sou	ıthboı	ınd
	L	T	R	L.	${f T}$	R	L	${f T}$	R	L	${f T}$	R
No. Lanes	1	2 •	(1	2 .	(;	1	1	>	· 1	1
Volumes	1	842	164	436	1150	1	183	1	488	14	1	1
Lane W (ft)	12.0	12.0		12.0	12.0			12.0	12.0		12.0	12.0
RTOR Vols	1		0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
the first teacher and												

				Signal	Onor	atio	nc				
		_	_			a CIO	115	_	_	_	_
Pha	se Combinati	on 1	2	3	4			5	6	7	8
EB	Left	*				NB	Left		*		
	Thru			*			Thru		*		
	Right			*			Right		*		
	Peds		*	*			Peds	*	*		
WB	Left	*	*			SB	Left	*			
	Thru		*	*			Thru	*			
	Right		*	*			Right	*			
	Peds		*	*			Peds	*	*	240	
NB	Right	*	*	*		EB	Right				
SB	Right	*	*	*		WB	Right				
Gre	en	5.0A 2	1.0A	32.0A		Gre	en	5.0A	11.0A		
Yel	low/AR	4.0	0.0	4.0		Yel	low/AR	4.0	4.0		
СУС	le Length:	90 secs	Ph	ase com	binat.	ion	order:	#1 #2	#3 #5	#6	

			Intersecti	ormance	Summary				
	Lane	Group:	Adj Sat	v/c	g/C			Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	110	1656	0.009	0.067	25.3	D	20.9	C
	TR	1247	3401	0.847	0.367	20.9	C		
WB	L	497	1656	0.878	0.300	30.7	D	13.6	В
	TR	2092	3486	0.578	0.600	7.4	В		
NB	$_{ m LT}$	221	1661	0.831	0.133	39.9	D	11.9	В
	R	1235	1482	0.395	0.833	1.3	Α		
SB	$_{ m LT}$	111	1665	0.135	0.067	25.6	D	24.1	С
	R	1186	1482	0.001	0.800	1.2	Α		
		Inte	ersection I	Delay =	15.6 se	ec/veh Int	cersec	tion LOS	= C
Lost	Time/	Cycle, L	= 12.0 se	ec Cri	tical v,	/c(x) =	0.80	0	

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Main Access

Analyst: Greg

File Name: 11_MAPA.HC9

Area Type: Other 4-29-99 AM Pk

Comment: Year 2010 W/ Proj Conditions

_==========	=====	=====	=====	=====	=====	=====	=====	=====		=====	=====	====
	Ea	astbo	und	Wes	stbour	nd	Noi	thbou	und	Sou	ıthboı	ınd
	L	L T R			${f T}$	R	L	${f T}$	R	L	${f T}$	R
									====			
No. Lanes	1	2	<	1	2 .	<) :	1	1)	1	1
Volumes	185	674	92	244	1249	91	44	1	118	85	1	20
Lane W (ft)	12.0	12.0		12.0	12.0			12.0	12.0		12.0	12.0
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
				Signa	al Ope	eratio	ons					

				Si	gnal	Opera	atio	ns				
Pha	se Combinatio	n	1	2	3	4	ĺ		5	6	7	8
EB	Left		*				NB	Left		*		
	Thru			*				Thru		*		
	Right			*				Right		*		
	Peds			*				Peds	*	*		
WB	Left		*				SB	Left	*			
	Thru			*				Thru	*			
	Right			*				Right	*			
	Peds			*				Peds	*	*		
NB	Right		*	*			EB	Right				
SB	Right		*	*			WB	Right				
Gre		.6.	0A 48	.0A			Gre	en	5.0A	5.0A		
	•	4 .		. 0				low/AR		4.0		
Сус	le Length: 9	0	secs	Phase	comb	oinat:	ion	order:	#1 #2	#5 #6		
						35556						

			Intorgoat	ion Donf	0.1000.000.00	C			
	Lane	Croun	Intersect			Summary		3	1
		Group:	Adj Sat	V/C	g/C			Approa	cn:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	313	1656	0.591	0.189	23.7	C	10.9	В
	TR	1864	3423	0.431	0.544	8.0	В		
WB	$\mathbf L$	313	1656	0.780	0.189	30.6	D	14.2	В
	TR	1879	3451	0.749	0.544	11.4	В		
NB	LT	111	1662	0.406	0.067	27.4	D	8.2	В
	R	1235	1482	0.096	0.833	0.9	A		
SB	LT	111	1661	0.777	0.067	45.4	E	36.9	D
	R	1284	1482	0.016	0.867	0.5	A		
		Int	ersection	Delav =	13 6 56	c/veh In	tersec	tion Ing	= B

Intersection Delay = 13.6 sec/veh Intersection LOS = B Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.731

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Main Access

File Name: 11_MAPP.HC9 Analyst: Greg

Area Type: Other 4-29-99 PM Pk

Comment: Year 2010 W/ Proj Conditions

========	====:	====:	====:	=====			=====	=====	=====		=====	====
	E &	Eastbound			stbour	nd	Noi	thbou	ınd	Sou	ıthbou	ınd
	L T R			L,	${f T}$	R	L	${f T}$	R	L	${f T}$	R
No. Lanes	1	2	<	1	2	<		1	1)	> 1	1
Volumes	124	849	164	436	1305	65	183	1	488	14	1	1
Lane W (ft)	12.0	12.0		12.0	12.0			12.0	12.0		12.0	12.0
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00

8

	T	~	Intersect			Summary			
	Lane	Group:	Adj Sat	V/C	g/C			Approad	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	239	1656	0.518	0.144	24.6	C	21.5	С
	TR	1247	3402	0.853	0.367	21.2	С		
WB	L	497	1656	0.878	0.300	30.7	D	17.3	С
	TR	1807	3461	0.796	0.522	13.2	В		
NB	LT	221	1661	0.831	0.133	39.9	D	11.9	В
	R	1235	1482	0.395	0.833	1.3	A		
SB	LT	111	1665	0.135	0.067	25.6	D	24.1	С
	R	1186	1482	0.001	0.800	1.2	А		
		Inte	ersection	Delay =	17.7 se	ec/veh In	tersec	tion LOS	= C

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111 (N-S) Main Access

File Name: 11_MABA.HC9 4-29-99 AM Pk Analyst: Greg Area Type: Other

Comment: Build-Out No Proj Conditions

	Ea	astbou	ınd	Wes	tbour	nd	Noi	thbou	ınd	Southbound		
),5	L	\mathbf{T}_{i}	R	L	T	R	L	T	R	L	${f T}$	R
No. Lanes	1	3 ((2	3 (<)	1	1) :	1	1
Volumes	1	1060	92	244	1711	1	44	1	118	13	1	1
Lane W (ft)	12.0	12.0		12.0	12.0			12.0	12.0		12.0	12.0
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00

** ** ***											
			Si	gnal	Oper	atio	ns				
Pha	se Combinat	ion 1	2	3	4	1		5	6	7	8
EB	Left	*				NB	Left		*		
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*	5.0			Peds	*	*		
WB	Left	*				SB	Left	*			
	Thru		*				Thru	*			
	Right		*				Right	*			
	Peds		*				Peds	*	*		
NB	Right	*	*			EB	Right				
SB	Right	*	*			WB	Right				
Gre	en	9.0A 55	.0A			Gre	en	5.0A	5.0A		
Yel	low/AR	4.0 4	. 0			Yel	low/AR	4.0	4.0		
Сус	le Length:	90 secs	Phase	comi	oinat.	ion	order:	#1 #2	#5 #6		

	Lane	Group:	Intersect Adj Sat	tion Perf V/c	ormance programme or g/C	Summary		Approad	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
		3.000							-1 - 1 - 1
EB	L	184	1656	0.005	0.111	23.0	С	5.6	В
	TR	3215	5167	0.394	0.622	5.5	В		
WB	L	368	3312	0.682	0.111	28.4	D	9.2	В
	TR	3254	5229	0.579	0.622	6.7	В		
NB	LT	111	1662	0.406	0.067	27.4	D	8.2	В
	R	1235	1482	0.096	0.833	0.9	A		
SB	LT	111	1666	0.126	0.067	25.6	D	23.9	С
	R	1284	1482	0.001	0.867	0.5	A		
		Int	ersection	Delay =	7.9 se	c/veh Int	cersec	tion LOS	= B
				_					

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111 (N-S) Main Access

Analyst: Greg File Name: 11 MABP.HC9

Area Type: Comment: Bu		Proj Co	onditions	4-2	29-99 PN				
	Eastbou L T		Westboui T			nbound R		==== hbour T	nd R
No. Lanes Volumes Lane W (ft) RTOR Vols		164 4	3 136 1806 2.0 12.0	1 0	12	1 488 2.0 12.0 0	1	1 .2.0	0
Lost Time	3.00 3.00 	3.00 3.	.00 3.00	3.00	3.00 3.	.00 3.00	3.00 3 	.00	3.00
Phase Combi EB Left Thru Right Peds WB Left	nation 1 *	2 * *	ignal Ope 3	eratio 4 NB SB	Left Thru Right Peds Left	5 * *	6 * * *	7	8
Thru Right Peds NB Right SB Right Green Yellow/AR Cycle Lengt	* * 8.0A 4.0 h: 90 secs		1.0	WB Gre Yel	Thru Right Peds Right Right een llow/AR order:	*	. 0	5	
Lane		ersecti 1j Sat	lon Perfo	ormand		ary	Apr	roac	 h:

	Lane	Group:	Intersect: Adj Sat	ion Perf v/c	ormance S	_		Approac	ch:			
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS			
EB	L	166	1656	0.006	0.100	23.6	С	13.3	В			
	TR	2580	5160	0.792	0.500	13.3	В					
WB	L	552	3312	0.813	0.167	29.7	D	13.0	В			
	TR	2963	5229	0.671	0.567	9.2	В					
NB	\mathtt{LT}	221	1661	0.831	0.133	39.9	D	11.9	В			
	R	1235	1482	0.395	0.833	1.3	Α					
SB	LT	111	1665	0.135	0.067	25.6	D	24.1	С			
	R	1186	1482	0.001	0.800	1.2	A					
		Inte	rsection 1	Delay =	13.0 sed	c/veh Int	ersect	tion LOS	= B			
Logt	Time/	T afour	- 12 0 6	oc Cri	tiasl 11/6	7/2/	- 0 75	1				

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Main Access

Analyst: Greg

File Name: 11_MATA.HC9 4-29-99 AM Pk

Area Type: Other

Comment: Build-Out W/ Proj Conditions

==========	=======================================											
	Εā	astbou	ınd	Wes	stbour	nd	Nor	thbou	ınd	Sou	ıthboı	ınd
	L	\mathbf{T}_{-}	R	L	\mathbf{T}	R	L	${f T}$	R	L	${f T}$	R
No. Lanes	1	3 (<	2	3 .	<	\	1	1		> 1	1
Volumes	185	1073	92	244	1786	91	44	1	118	85	1	20
Lane W (ft)	12.0	12.0		12.0	12.0			12.0	12.0		12.0	12.0
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
				Signa	al Ope	eratio	ons					
Phase Combin	nation	n 1	2	3		4		1	5	6	7	8
EB Left		*				NB	Left	-		*		
Thru			*				Thru	1		*		

Pha	se Combination	1 1	2	3	4	i i		5	6	7	8
EB	Left	*				NB	Left		*		
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*				Peds	*	*		
WB	Left	*				SB	Left	*			
	Thru		*				Thru	*			
	Right		*				Right	*			
	Peds		*				Peds	*	*		
NB	Right	*	*			EB	Right				
SB	Right	*	*			WB	Right				
Gre	en 12	2.0A 52	.0A			Gree	en	5.0A	5.0A		
Yel	low/AR 4	1.0 4	. 0			Yel.	low/AR	4.0	4.0		
Сус	le Length: 90) secs	Phase	combi	nati	lon o	order:	#1 #2	#5 #6		

			Intersect	ion Perf	ormance	Summary			
	Lane	Group:	Adj Sat	v/c	g/C	Danimar y		Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
		7.7.							
EB	$\mathbf L$	239	1656	0.773	0.144	33.7	D	10.0	В
	TR	3043	5167	0.421	0.589	6.6	В		
WB	L	478	3312	0.525	0.144	23.9	C	10.2	В
	TR	3057	5191	0.676	0.589	8.6	В		
NB	\mathtt{LT}	111	1662	0.406	0.067	27.4	D	8.2	В
	R	1235	1482	0.096	0.833	0.9	A		
SB	\mathtt{LT}	111	1661	0.777	0.067	45.4	\mathbf{E}^{z}	36.9	D
	R	1284	1482	0.016	0.867	0.5	A		
		Int	ersection	Delav =	10.8 se	c/veh Int	tersec	tion LOS	= R

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Main Access

Analyst: Greg

File Name: 11 MATP.HC9

Area Type: Other

4-29-99 PM Pk

Comment: Build-Out W/ Proj Conditions

Comment	. bu.	=====	16 W/	FIO)	Cond	CTOIL							
		Εā	astbo	ınd	Wes	tbour	nd	No	rthbo	und	So	uthbou	und
		L	T	R	L	T	R	L	T	R	L	T	R
No. Lan	es	1	3	<	2	3 .	<		> 1	1		> 1	1
Volumes		1	1700	164		1984	61	183	1	488	1	1	84
Lane W RTOR Vo.		12.0	12.0	0	12.0	12.0	C		12.0	12.0	i i	12.0	12.0
Lost Ti		3.00	3.00	•	3.00	3.00	_	3.00	3.00	3.00	3.00	3.00	3.00
					Ciana	al Ope		ong					
Phase C	ombir	nation	n 1	2	3	_	1 1	.0115		5	6	7	8
EB Lef			*				NE				*		
Thr					*			Thr			*		
Rig Ped				*	*			Rig! Ped:		*	*		
WB Lef			*	*			SE			*			
Thr	u			*	*			Thr	u	*			
Rig				*	*			Rig		*			
Ped NB Rig			*	*	*		PE	Ped	5	*	*		
SB Rig			*	*	*		EE	_					
Green			7.0A	5.0A	37.02	A		een	16.	0A 9	.0A		
Yellow/			4.0	0.0	4.0		114	llow/	AR 4.	0 4	.0		
Cycle L	engtl	n: 90) sec	s Pha	ase co	ombina	ation	orde	r: #1	#2 #	3 #5	#6	

	Lane	Group:	Intersect: Adj Sat	v/c	g/C	-		Approac				
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS			
							= (-,+)					
EB	L	147	1656	0.842	0.089	48.6	E	24.2	С			
	TR	2179	5160	0.941	0.422	22.7	C					
WB	L	478	3312	0.939	0.144	43.8	E	22.1	C			
	TR	2487	5206	0.905	0.478	17.7	C					
NB	LT	185	1661	0.997	0.111	75.9	F	23.6	C			
	R	1054	1482	0.463	0.711	3.9	Α					
SB	LT	314	1660	0.995	0.189	61.3	F	48.5	E			
	R	1219	1482	0.069	0.822	1.0	Α					
		Inte	rsection I	Delay =	24.8 sec	:/veh Int	ersec	tion LOS	= C			
Lost	Time/	Cvcle, L	= 12.0 se	ec Cri	tical v/c	$\mathbf{c}(\mathbf{x}) =$	0.96	0				

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Dune Palms Road File Name: 11_DPEA.HC9

Analyst: Greg Area Type: Other

4-29-99 AM Pk

Comment: Existing Conditions

===													
37		Ea	astbou	ınd	Wes	stbour	nd	No	thbou	ınd	So	uthbou	.nd
		L	${f T}$	R	L.	${f T}$	R	L	${f T}$	R	L	${f T}$	R
No.	Lanes	1	2	<	1	2		1	1	1	1	1 <	
Vol	umes	9	426	30	57	688	98	24	145	21	106	166	52
	e W (ft)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
	R Vols		2 22	0			0	1		0			0
Los	t Time	[3.00	3.00	3.00	[3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
					Cian	al On	orati	ong					2200
Dha	Signal Operations Phase Combination 1 2 3 4 5 6 7 8												
EB	Left	iacioi	*	4	3	4	* _{NB}	Left		>	0	/	8
	Thru				*		1112	Thru				*	
	Right				*			Rigi				*	
	Peds			*	*			Ped				*	
WB	Left		*	*			SB	Lef	t :	*	*		
	Thru			*	*		Į.	Thru			*	*	
	Right			*	*			Rigi			*	*	
NED	Peds			*	*			Ped				*	
NB	Right						EB	_					
SB	\ \tag{\tau} = \frac{1-3-1}{2}												
	AND THE RESERVE OF THE PERSON												
	cle Length: 90 secs Phase combination order: #1 #2 #3 #5 #6 #7												

			Intersect	cion Perf	ormance	Summary						
	Lane	Group:	Adj Sat	v/c	g/C			Approac	ch:			
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS			
									-			
EB	L	92	1656	0.098	0.056	26.1	D	10.3	В			
	TR	1573	3452	0.305	0.456	10.0	В					
WB	L	166	1656	0.344	0.100	24.9	С	10.7	В			
	TR	1710	3421	0.482	0.500	9.8	В					
NB	L	110	1656	0.217	0.067	25.9	D	23.2	С			
	T	290	1743	0.499	0.167	23.2	С					
	R	247	1482	0.085	0.167	20.5	C					
SB	L	239	1656	0.443	0.144	23.6	С	21.3	C ==			
	TR	411	1681	0.531	0.244	20.1	C					
		Inte	ersection	Delay =	13.7 se	c/veh Int	ersect	tion LOS	= B			

Intersection Delay = 13.7 sec/veh Intersection LOS = B Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.454

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Dune Palms Road File Name: 11_DPEP.HC9

Analyst: Greg

4-29-99 PM Pk

Area Type: Other

Comment: Existing Condition

	Εā	astbou	ınd	Wes	tbour	nd	Nor	thbou	ınd	Sou	0		
	L	${f T}$	R	L	${f T}$	R	L	T	R	L	${f T}$	R	
No. Lanes	1	2	<	1	2 <		1	1	1	1	1 <		
Volumes	15	932	24	25	967	45		62	57		48	19	
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0		
RTOR Vols			0			0			0			0	
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	

			٥	Signal	Opera	atio:	ns				
Pha	se Combination	1	2	3	4			5	6	7	8
EB	Left	*				NB	Left	*			
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*				Peds				
WB	Left	* i:				SB	Left	*			
	Thru		*			l	Thru		*		
	Right		*			l	Right		*		
	Peds		*				Peds				
NB	Right	*	*			EB	Right				
SB	Right					WB	Right				
Gree	en 5	.0A 4	49.0A			Gre	en	5.0A	5.0A		
Yel.	low/AR 4	.0	4.0			Yel	low/AR	4.0	4.0		
Сус	le Length: 80	secs	s Phas	se comb	oinat	ion	order:	#1 #2	#5 #6		

			Intersecti	on Perfo	ormance S	Summary			
	Lane	Group:	Adj Sat	v/c	g/C	_		Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	124	1656	.0.121	0.075	22.3	С	5.5	В
	TR	2171	3473	0.463	0.625	5.2	В		
WB	L	124	1656	0.201	0.075	22.6	C	5.8	В
	TR	2164	3463	0.491	0.625	5.4	В		
NB	L	124	1656	0.274	0.075	22.9	С	15.6	С
	T	131	1743	0.474	0.075	25.0	C		
	R	1204	1482	0.047	0.813	0.9	A		
SB	L	124	1656	0.185	0.075	22.5	С	25.4	D
	TR	125	1669	0.535	0.075	26.4	D		
		Inte	rsection I	Delay =	7.0 sec	c/veh Int	ersect	tion LOS	= B
Lost	Time/O	Cycle, L	= 12.0 se	ec Crit	cical v/c	C(X) =	0.450	0	

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Dune Palms Road File Name: 11_DP0A.HC9
4-29-99 AM Pk

Area Type: Other

Analyst: Greg

Comment: Ye		No Proj	Cond	itions		29-99 	AM P	ζ			
2	East	oound	Wes	stbou	 nd	Nor	thbo	ınd	 Soi	ıthboı	====
	L T	R		Т	R	L	T	R	L	T	R
								2755			
No. Lanes	1 2	•	1	_	<	1	1	1	1	1 .	<
Volumes	17 59		1				35			92	
Lane W (ft)	12.0 12		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vols	2 00 2 /	0	2 00	2 00	0	2 00	2 00	0	2 00		0
Lost Time	3.00	3.00	3.00	3.00	3.00						
			Signa	al Ope	eratio	าท ๔					
Phase Combi	nation 1	2	3		4 1	J115		5	6	7	8
EB Left	*				NB	Left		*	Ü	,	O
Thru			*			Thru	1			*	
Right			*			Righ	nt			*	
Peds		*	*			Peds				*	
WB Left	*	*			SB	Left		*	*		
Thru		*	*			Thru			*	*	
Right Peds		*	*		1	Righ			*	*	
NB Right		,	^		EB	Peds Righ		0.50		*	
SB Right					WB	_					
Green	4.02	A 5.0A	32.02	A		een		0A 7	.OA 2	1 NA	
Yellow/AR	4.0	0.0		_		llow/A				4.0	
Cycle Lengt	h: 90 se	ecs Ph	ase co	ombina							
		Interce	ction	Darf	arman/	~ Q11n	זאר בי תח				

			Intersect	cion Perf	ormance	Summary			
	Lane	Group:	Adj Sat	V/C	g/C			Approad	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	92	1656	0.185	0.056	26.3	D	15.2	C
	TR	1262	3441	0.543	0.367	14.9	В		
WB	L	184	1656	0.511	0.111	26.3	D	18.1	С
	TR	1439	3408	0.817	0.422	17.5	C		
NB	L	110	1656	0.444	0.067	28.0	D	26.7	D
	${f T}$	426	1743	0.796	0.244	27.5	D		
	R	362	1482	0.097	0.244	17.0	С		
SB	$\mathbf L$	239	1656	0.757	0.144	32.6	D	30.4	D
	TR	546	1693	0.882	0.322	29.6	D		
		Inte	ersection	Delay =	21.3 se	c/veh Int	ersec	tion LOS	= C

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

Analyst: Greg

(N-S) Dune Palms Road File Name: 11 DPOP.HC9

Area Type: Other 4-29-99 PM Pk

Comment: Year 2010 No Project Condition

	====:						-====	=====			=====	====
	Εć	astbou	ınd	Wes	stbour	nd	Noi	thbou	ınd	Sou	ıthboı	ınd
	L	${f T}$	R	L.	${f T}$	R	L	T	R	L	${f T}$	R
								= (+,+,+)				
No. Lanes	1	2 .	<	1	2	<	1	1	1	1	1 <	(
Volumes		1273	48	41	1329	77	67	145	94	39	112	35
, ,	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
	Signal Operations											
		_	_			. 1				_		

		Lgiiui	OPCIO	ACTO.	110				
on 1	2	3	4			5	6	7	8
*				NB	Left	*			
	*				Thru		*		
	*				Right		*		
	*				Peds				
*				SB	Left	*			
	*				Thru		*		
	*				Right		*		
	*				Peds				
*	*			EB	Right				
				WB	Right				
5.0A 46	.0A			Gre	en	5.0A	8.0A		
4.0 4	. 0			Yel	low/AR	4.0	4.0		
80 secs	Phase	e comb	oinat:	ion	order:	#1 #2	#5 #6		
	* * 5.0A 46 4.0 4	on 1 2 * * * * * * * * * * * * * * * * * *	on 1 2 3 * * * * * * * * * * * * *	on 1 2 3 4 * * * * * * * * * * * * *	on 1 2 3 4 NB * * * * * * * * * * * * *	* NB Left Thru Right Peds * SB Left Thru Right Peds * SB Left Thru Right Peds * EB Right WB Right WB Right S.0A 46.0A Green Yellow/AR	On 1 2 3 4 5 NB Left * Thru Right Peds * * * * * * * * * * * * *	On 1 2 3 4 5 6 * Thru * Thru * Right * Peds * SB Left * Thru * Thru * Right * Peds * EB Right * Peds * * EB Right WB Right 5.0A 46.0A Green 5.0A 8.0A Yellow/AR 4.0 4.0	On 1 2 3 4 5 6 7 ** ** ** ** ** ** ** ** **

	Lane	Group:	Intersect Adj Sat	ion Perf v/c	ormance g/C	Summary		Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
						7.77.22			
\mathbf{E} B	L	124	1656	0.225	0.075	22.7	С	8.3	В
	TR	2037	3467	0.681	0.587	8.0	В		
WB	${f L}$	124	1656	0.330	0.075	23.3	С	9.0	В
	TR	2032	3458	0.727	0.587	8.6	В		
NB	${f L}$	124	1656	0.539	0.075	26.6	D	21.0	С
	${f T}$	196	1743	0.739	0.112	31.4	D		
	R	1204	1482	0.078	0.813	1.0	A		
SB	L	124	1656	0.314	0.075	23.1	C	32.1	D
	TR	189	1681	0.777	0.112	34.5	D	-	
		Tnt	orgoation '	Dolass -	11 0 00	od/woh Int	-02000	tion TOG	- D

Intersection Delay = 11.0 sec/veh Intersection LOS = B Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.682

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Dune Palms Road File Name: 11 DPPA.HC9

Area Type: Other

Analyst: Greg

SB Right

Green

4-29-99 AM Pk

WB Right

Green 5.0A 8.0A 20.0A

Comment: Year 2010 W/ Proj Conditions

Co	omment: Yea	ar 20:	10 W/	Proj	Cond	itions	3						
_		E	astboi		Wes	===== stbour	nd	No	rthbou	ınd	Sou	===== ıthboı	==== und
		L	Т	R	L	T	R	L	\mathbf{T}	R	L	${f T}$	R
Vo	o. Lanes lumes ine W (ft)	1 42	_	72		2 1135 12.0	204		1 352 12.0		1	1 402	118
RI	OR Vols		3.00	3.00			0 3.00			0		12.0	03.00
-													
Ph	ase Combin	natio	n 1	2	Signa 3	al Ope	aracio 1	ons	!	5	6	7	8
EE			*				NB	Left	C .	*			
	Thru				*			Thru				*	
	Right Peds			*	^			Righ Ped:				*	
WE			*	*			SB	Lef		*	*		
	Thru			*	*			Thru			*	*	
	Right			*	*			Rigl			*	*	
	Peds			*				Peds					
NE	Right						EB	Rigl	ht				

Yellow/AR 4.0 0.0 4.0 Yellow/AR 4.0 0.0 4.0 Cycle Length: 90 secs Phase combination order: #1 #2 #3 #5 #6 #7

4.0A 10.0A 27.0A

			Intersect	ion Perf	ormance	Summary			
	Lane	Group:	Adj Sat	v/c	g/C			Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
			~~~~~						
EΒ	L	92	1656	0.457	0.056	29.1	D	19.6	С
	TR	1068	3433	0.701	0.311	19.1	С		
WB	L	276	1656	0.341	0.167	21.7	С	29.9	D
	TR	1439	3407	0.977	0.422	30.4	D		
NB	L	110	1656	0.969	0.067	83.2	F	43.2	E
	${f T}$	407	1743	0.866	0.233	33.6	D		
	R	346	1482	0.101	0.233	17.5	С		
SB	L	258	1656	0.858	0.156	40.3	E	40.3	E
	TR	543	1684	0.958	0.322	40.2	E		
		T +-		D = 1 ===	21 6	- / 1 -			

Intersection Delay = 31.6 sec/veh Intersection LOS = D Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.936

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111 Analyst: Greg

(N-S) Dune Palms Road File Name: 11 DPPP.HC9

Area Type: Other 4-29-99 PM Pk

Comment: Year 2010 W/ Project Condition

=========	====:	=====	====:	=====	=====	=====	=====	=====	====:	=====	=====	=====
	Ea	astbou	ınd	Wes	tbour	nd	No	rthbou	ınd	Sou	ıthboı	und
	L	$\mathbf{T}$	R	L	T	R	L	${f T}$	R	L	${f T}$	R
No. Lanes	1	2 .	<	1	2 .	<	1	1	1	1	1	<
Volumes	84	1462	108	41	1487	91	117	150	94	135	144	78
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
				Signa	al Ope	eratio	ons					
Phase Combin	nation	า 1	2	3	4	4		1	5	6	7	8
ER Left		*				INB	T.o.f.t	- ;	*			

Pha	se Combinatio	n 1	2	3	4	1		5	6	7	8
EB	Left	*				NB	Left	*			
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*				Peds				
WB	Left	*				SB	Left	*			
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*				Peds				
NB	Right	*	*			EB	Right				
SB	Right					WB	Right	-			
Gre		5.0A 4	9.0A			Gre	en	8.0A	12.0A		
Yel	low/AR	4.0	4.0			Yel	low/AR	4.0	4.0		
Сус	le Length: 9	0 secs	Phase	combi	nat:	ion	order:	#1 #2	#5 #6		

			Intersect	ion Perf	ormance	Summary			
	Lane	Group:	Adj Sat	V/c	g/C	_		Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	110	1656	0.761	0.067	43.7	E	15.5	С
	TR	1917	3450	0.860	0.556	14.0	В		
WB	L	110	1656	0.371	0.067	27.0	D	14.4	В
	TR	1920	3456	0.863	0.556	14.1	В		
NB	L	166	1656	0.707	0.100	33.9	D	22.1	С
	${f T}$	252	1743	0.596	0.144	26.0	D		
	R	1186	1482	0.079	0.800	1.2	A		
SB	L	166	1656	0.815	0.100	43.0	E	49.3	E
	TR	238	1651	0.931	0.144	53.1	E		
		Tn+	orgoation '	Dolass -	10 E 00	a /rah Tm		TOO	~

Intersection Delay = 18.5 sec/veh Intersection LOS = C Lost Time/Cycle, L = 12.0 sec Critical v/c(x) = 0.861

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Dune Palms Road File Name: 11_DPBA.HC9 4-29-99 AM Pk

Analyst: Greg Area Type: Other

Comment: Build-Out No Proj Conditions

=========	======	== <b>==</b> ====	=====	=== <b>=</b> =	====	=====	======	======	=====	====
	1	tbound	1	tboun			thbound	So	uthbou	ınd
	L :	r r 	L .	T	R	L	T R	L	T	R
No. Lanes Volumes Lane W (ft) RTOR Vols	27	3	1 149 12.0	3 < 1216 12.0	273	2 70 12.0		2 55 295 12.0	2 « 842 12.0	149
Lost Time	3.00 3	.00 3.00	3.00	3.00	3.00	3.00	3.00 3.0		3.00	
			 Signa	al Ope	 ratio	ons				
Phase Combin	nation 1	1 2	3	4			5	6	7	8
EB Left Thru	,	*	*		NB	Left		*		
Right			*			Thru Righ		*	*	
Peds		*				Peds				
WB Left	7	* *			SB	Left	*	*		
Thru		*	*			Thru		*	*	
Right		*	*			Righ		*	*	
Peds NB Right		*			EB	Peds Righ				
SB Right					WB	Righ	t			
Green	4.0	0A 7.0A	29.0A	7	Gre	een	4.0A	9.0A 2	1.0A	
Yellow/AR	4.0		4.0				R 4.0		4.0	
Cycle Length	n: 90 s	secs Ph	ase co	mbina	tion	order	: #1 #2	#3 #5	#6 #7	

			Intersect:	ion Perf	ormance S	Summary			
	Lane	Group:	Adj Sat	v/c	g/C	_		Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	92	1656	0.293	0.056	26.9	D	16.3	С
	TR	1717	5150	0.539	0.333	16.0	С		
WB	L	221	1656	0.675	0.133	29.4	D	17.4	С
	TR	2091	5086	0.783	0.411	16.3	С		
NB	L	494	3312	0.146	0.156	21.3	С	18.0	С
	TR	1188	3450	0.698	0.344	17.7	С		
SB	L	494	3312	0.615	0.156	25.4	D	24.4	C
	TR	1174	340,8	0.887	0.344	24.1	С		
			rsection I	Delay =	19.2 sec	c/veh Int	ersect	tion LOS	= C
Lost	Time/	Cycle, L	= 12.0 se		tical v/d		0.80		_

Center For Microcomputers In Transportation

______

Streets: (E-W) Highway 111 Analyst: Greg

(N-S) Dune Palms Road File Name: 11_DPBP.HC9

Area Type: Other

4-29-99 PM Pk

Comment: Build-Out No Proj Conditions

ol.	Eastbound L T R		Westbound     L T R			Northbound   L T R			Southbound			
No. Lanes	1	3	(	1	3	<	2	2	<	2	2 <	
Volumes		1636	70	66	1703	125	98	314	149	64	243	56
, ,	12.0	12.0	_	12.0	12.0		12.0	12.0		12.0	12.0	
		2 00	0			0			0			0
LOST Time	3.00	3.00	3.00	[3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Signal Operations												
Volumes Lane W (ft) RTOR Vols Lost Time	12.0	12.0	0	3.00	3.00	3.00	3.00	12.0	0	12.0		0

			Si	gnal	Opera	atio	ns				
Pha	se Combinatior	1 1	2	3	4	1		5	6	7	8
EB	Left	*				NB	Left	*			
	Thru		*				Thru		*		
	Right		*				Right		*		
	Peds		*				Peds				
WB	Left	*				SB	Left	*			
	Thru		*				Thru		*		
	Right		*			1	Right		*		
	Peds		*				Peds				
NB	Right					EB	Right			ye.	
SB	Right					WB	Right				
Gre	en 5	.OA 49	.0A			Gre	_	5.0A	15.0A		
Yel.	low/AR 4	.0 4	. 0			ı	low/AR		4.0		
Сус	le Length: 90	secs	Phase	comb	inat		order:		#5 #6		
12000								—			

			Intersect	ion Perf	ormance S	Summary			
	Lane	Group:	Adj Sat	V/C	g/C			Approac	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	110	1656	0.399	0.067	27.3	D	9.8	В ::
	TR	2887	5197	0.650	0.556	9.4	В		
WB	L	110	1656	0.598	0.067	32.3	D	10.6	В
	TR	2876	5176	0.699	0.556	9.9	В		
NB	L	221	3312	0.457	0.067	27.2	D	29.1	D
	TR	590	3318	0.824	0.178	29.5	D		
SB	L	221	3312	0.299	0.067	26.1	D	23.0	С
	TR	602	3388	0.521	0.178	22.3	C		
			ersection 1		13.4 sec	c/veh Int	ersect	tion LOS	= B
Lost	Time/(	Cvcle, L	= 12.0  s	ec Cri	tical v/c		0 699		

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111

(N-S) Dune Palms Road File Name: 11_DPTA.HC9

Analyst: Greg Area Type: Other 4-29-99 AM Pk

Comment: Build-Out W/ Proj Conditions										
	Eastbo	Eastbound   Westbound L T R L T R				Northbound L T R			Southbound L T R	
									1011	
No. Lanes	1 3	<	1 3	. <	2	2 <	2	2	<	
Volumes	51 803	100			129		55 335	855	175	
Lane W (ft)	12.0 12.0		12.0 12	. 0	12.0	12.0	12.0	12.0		
RTOR Vols		0		0			0		0	
Lost Time	3.00 3.00	3.00	3.00 3.	00 3.00	3.00	3.00 3.	00 3.00	3.00	3.00	
Signal Operations										
Phase Combi		2	3	4	T 51	5 *	6 *	7	8	
EB Left	*			NB	Left					
Thru			*		Thru		*	*		
Right			*		Righ		*	*		
Peds		*			Peds					
WB Left	*	*		SB			*			
Thru		*	*		Thru		*	*		
Right		*	*		Righ		*	*		
Peds		*			Peds					
NB Right				EB	_					
SB Right	4 0-			WB	_					
Green	4.0A		29.0A		een	4.0A				
Yellow/AR	4.0	0.0	4.0			R 4.0		4.0		
Cycle Length: 90 secs Phase combination order: #1 #2 #3 #5 #6 #7										

	Lane	Approad	Approach:						
	Mvmts	Group: Cap	Adj Sat Flow	v/c Ratio	g/C Ratio	Delay	LOS	Delay	LOS
EB	L	92	1656	0.554	0.056	31.9	D	17.1	С
	TR	1714	5142	0.579	0.333	16.4	С		
WB	L	221	1656	0.675	0.133	29.4	D	20.8	C
	TR	2091	5087	0.899	0.411	20.2	С		
NB	L	494	3312	0.269	0.156	21.8	С	18.4	С
	TR	1188	3450	0.709	0.344	17.9	C		
SB	L	494	3312	0.698	0.156	27.2	D	27.1	D
	TR	1170	3397	0.924	0.344	27.1	D		
		Inte	rsection 1	Delay =	21.4 sec	c/veh Int	ersec	tion LOS	= C
Lost	Time/	Cycle, L	= 12.0 se	ec Cri	tical v/d	$c(\mathbf{x}) =$	0.89	3	

Center For Microcomputers In Transportation

Streets: (E-W) Highway 111 (N-S) Dune Palms Road File Name: 11_DPTP.HC9

Area Type: Other 4-29-99 PM Pk

Comment: Build-Out W/ Proj Conditions

========	=====	ac w/	=====	-====	=====	5 =====	=====					
(	Eastbound			Westbound			Northbound			Southbound		
	L	T	R	L.	T	R	L	${f T}$	R	L	Т	R
No. Lanes	1	3 .	<	1	3	<	2	2 4	(	2	2	(
Volumes	100	1825	130	66	1861	140	149	319	149	160	275	99
Lane W (ft)	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
RTOR Vols			0			0			0			0
Lost Time	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Dhaga Cambi		_ 1	^	-	al Ope	F. (	ons	,	_	-	-	•
Phase Combi EB Left	nacioi	:1 L	2	3	•	4	T - 5		5 *	6	7	8
Thru			*			NB	Left Thru	_	`	*		
Right			*				Rigl			*		
Peds			*				Ped					
WB Left		*				SB			k			
Thru			*			152	Thr			*		
Right			*				Rig			*		
Peds			*				Ped					
NB Right						ĒВ						
SB Right						WB	Rigl	nt				
Green	Ç	5.0A 4	19.0A			Gr	een	5.0	OA 15	.0A		
Yellow/AR		4.0	4.0			Yе	llow/	AR 4.0	) 4	. 0		
Cycle Lengt	h • 91	1 000	Dh:	200 0	amhin:	ation	ordo	r. #1	# 2 #	5 #6		

Cycle Length: 90 secs Phase combination order: #1 #2 #5 #6

			Intersect	cion Perf	ormance	Summary			
	Lane	Group:	Adj Sat	v/c	g/C			Approad	ch:
	Mvmts	Cap	Flow	Ratio	Ratio	Delay	LOS	Delay	LOS
EB	L	110	1656	0.906	0.067	66.7	F	13.1	В
	TR	2876	5177	0.748	0.556	10.6	В		
WB	L	110	1656	0.598	0.067	32.3	D	11.5	В
	TR	2874	5174	0.766	0.556	10.9	В		
NB	L	221	3312	0.693	0.067	32.6	D	30.6	D
	TR	590	3320	0.832	0.178	29.9	D		
SB	L	221	3312	0.747	0.067	35.4	D	27.5	D
	TR	595	3348	0.660	0.178	24.2	С		
		Inte	ersection	Delay =	15.8 se	c/veh Int	ersec	tion LOS	= C
T +	m /	~ ~	100	~ .		, , ,		_	

## Appendix 5

CONSISTENCY WITH GENERAL PLAN CIRCULATION POLICIES

## Appendix 5 Consistency With La Quinta Circulation Policies

1. (General Plan Policies 3-2.1.3 through 3-2.1.6)

The proposed project shall comply with the provisions of the City Travel Demand Ordinance.

2. The City shall encourage mixed use developments, where appropriate, as a means of promoting increased opportunities for pedestrian travel (Policy 3-6.3.5).

The proposed mixed use development includes a variety of support uses designed to encourage internal trips that can be accomplished by pedestrian travel.

3. <u>Bikeways shall be designed and constructed in conformance with requirements in the Caltrans Manual "Planning and Design Criteria for Bikeways in California" (Policy 3-6.2.5).</u>¹

The proposed development will incorporate a Class III bikeway along Highway 111, adjacent to the project site.

The proposed development will incorporate a Class III bikeway along Dune Palm Road north of Highway 111 and adjacent to the project site.

The proposed development will incorporate a Class III bikeway along Adams Street north of Highway 111 and adjacent to the project site.

4. City street access guidelines include Circulation Policy 3-3.1.3 which states: a) access by individual driveways to Major and Primary Arterials shall be restricted wherever possible; b) access to Major and Primary Arterials shall be limited through the use of medians and access controls; and c) when permitted, access along arterial and collector streets shall be located a minimum of 250 feet from the ends of the curb returns.

The proposed project shall be inconsistent with the provisions of the City Circulation Policy 3-3.1.3 at the two gas station driveways adjacent to the corner of Highway 111 and Dune Palm Road and at the industrial street intersection with Adams Street.

^{1.} The master planned bikeway classifications adjacent to the site were provided by Mr. Greg Trousdell, City of La Quinta Community Development Department by facsimile dated 5/10/99.