Design Procedure for BMP Design Vo	olume	
Designer:		_
Date:		_
Project:		_
Location:		_
1. Determine the Tributary Area to the BMP (A _{trib})	A _{trib} = acres	(1)
2. Determine the impervious area ratio (i)		
a. Determine impervious area within (A _{trib})	A _{imp} = acres	(2)
b. Calculate <i>i</i> = (2) / (1)	i = <u>acres</u> acre	
3. Determine Runoff Coefficient (C)		
$C = 0.858 \cdot i^3 - 0.78 \cdot i^2 + 0.774 \cdot i + 0.04$ $C = 0.858 \cdot (3)^3 - 0.78 \cdot (3)^2 + 0.774 \cdot (3) + 0.04$	C =	(4)
4. Determine Unit Storage Volume (V _u)		
V _ι =0.40•C V _ι =0.40• (4)	$V_u = \underline{\qquad \qquad \frac{\text{acre-ir}}{\text{acre}}}$	<u>(5)</u>
5. Determine Design Storage Volume		
a. V _{BMP} = (5) x (1) [acre-in]	V _{BMP} = acre-ir	. ,
b. V _{BMP} = (6) / 12 [acre-ft]	V _{BMP} = acre-f	• •
c. $V_{BMP} = (7) \times 43560$ [ft ³]	$V_{BMP} = $ ft ³	(8)
Notes:		
-		

Design Procedure Form for Design Flow Uniform Intensity Design Flow			
Danimary			
Company:			
Project:			
Location:			
Determine Impervious Percentage			
a. Determine total tributary area	A _{total} =	acres	(1)
b. Determine Impervious %	i =	%	(2)
Determine Runoff Coefficient Values Use Table 4 and impervious % found in step 1			
a. A Soil Runoff Coefficient	C _a =		(3)
b. B Soil Runoff Coefficient	C _b =		(4)
c. C Soil Runoff Coefficient	C _c =		(5)
d. D Soil Runoff Coefficient	C _d =		(6)
Determine the Area decimal fraction of each soil type in tributary area			
a. Area of A Soil / (1) =	A _a =		<i>(</i> 7 <i>)</i>
b. Area of B Soil / (1) =	A _b =		(8)
c. Area of C Soil / (1) =	A _c =		(9)
d. Area of D Soil / (1) =	A _d =		(10)
Determine Runoff Coefficient			
a. $C = (3)x(7) + (4)x(8) + (5)x(9) + (6)x(10) =$	C =		(11)
5. Determine BMP Design flow			
a. $Q_{BMP} = C \times I \times A = (11) \times 0.2 \times (1)$	Q _{BMP} =	<u>ft³</u> s	(12)

			Worksheet 3
De	esign Procedure Form for Extend	ded Detention Basin	
D	esigner:		
	ompany:		
	Date:		
	Project:		
L	ocation:		
1	Determine Design Volume (Use		
••	Worksheet 1)		
	a. Total Tributary Area (minimum 5 ac.)	$A_{trib} = \underline{\hspace{1cm}}$	_
	b. Design Volume, V _{BMP}	V _{BMP} =	_ ft ³
2.	Basin Length to Width Ratio (2:1 min.)	Ratio =	L:W
3.	Two-Stage Design		
	a. Overall Design1) Depth (3.5' min.)	Depth =	ft
	2) Width (30' min.)	Width =	
	3) Length (60' min.)	Length =	
	4) Volume (must be $\geq V_{BMP}$)	Volume =	ft ³
	b. Upper Stage	Donth	£1
	1) Depth (2' min.)	Depth = Slope =	
	2) Bottom Slope (2% to low flow	Slope =	/0
	channel recommended) c. Bottom Stage		
	1) Depth (1.5' to 3')	Depth =	ft
	2) Length	Length =	ft
	3) Volume (10 to 25% of V _{BMP})	Volume =	^
4.	Forebay Design		
•	a. Forebay Volume (5 to 10% of V _{BMP})	Volume =	ft ³
	b. Outlet pipe drainage time (≅ 45 min)	Drain time =	minutes
5	Low-flow Channel		
٥.	a. Depth (9" minimum)	Depth =	ft
	b. Flow Capacity (2 * Forebay Q _{OUT})	Q _{Low Flow} =	

6.	Trash Rack or Gravel Pack (check one)	Trash Rack Gravel Pack	_
7.	Basin Outlet a. Outlet type (check one)	Single orifice Multi-orifice plate Perforated Pipe Other	
	b. Orifice Areac. Orifice Typed. Maximum Depth of water above	Area = ft ² Type ft Depth = ft	
	bottom orifice e. Length of time for 50% V _{BMP} drainage (24 hour minimum)	Time 50% = hrs	
	f. Length of time for 100% V _{BMP} drainage (between 48 and 72 hours)	Time 100% = hrs	
	 g. Attached Documents (all required) 1) Stage vs. Discharge 2) Stage vs. Volume 3) Inflow Hydrograph 4) Basin Routing 	Attached Documents (check) 1) 2) 3) 4)	
8.	Increased Runoff (optional) Is this basin also mitigating increased runoff? Attached Documents (all required) for 2, 5, & 10-year storms:	Yes No (if No, skip to #9) Attached Documents (check)	
	 Stage vs. Discharge Stage vs. Volume Inflow Hydrograph Basin Routing 	1) 2) 3) 4)	
9.	Vegetation (check type)	Native Grasses Irrigated Turf Other	_

10. Embankmenta. Interior slope (4:1 max.)b. Exterior slope (3:1 max.)	Interior Slope = Exterior Slope =	% %
11. Access a. Slope (10% max.) b. Width (16 feet min.)	Slope = Width =	% ft
Notes:		

Design Procedure Form for Infiltr	ation Rasin			
Designer:				
Company: Date: Project:				
Location:				
 Determine Design Storage Volume (Use Worksheet 1) a. Total Tributary Area (maximum 50) b. Design Storage Volume, V_{BMP} 	A _{trib} = V _{BMP} =			
 2. Maximum Allowable Depth (D_m) a. Site infiltration rate (I) b. Minimum drawdown time (48 hrs) c. Safety factor (s) d. D_m = [(t) x (I)]/[12s] 	I = t = s = D _m =	hrs		
3. Basin Surface Area $A_m = V_{BMP} / D_m$	A _m =	ft²		
Vegetation (check type used or describe "other")	Native Grasses Irrigated Turf Grass Other			
Notes:				

Design Procedure Form for Infiltra Designer: Company: Date: Project: Location:	ation Trench	
Determine Design Storage Volume (Use worksheet 1) a. Total Tributary Area (maximum 10) b. Design Storage Volume, V _{BMP}	$A_{trib} = \underline{\qquad} acres$ $V_{BMP} = \underline{\qquad} ft^3$	
 2. Maximum Allowable Depth (D_m = tl/12s) a. Site infiltration rate (I) b. Minimum drawdown time (t = 48 hrs) c. Safety factor (s) d. D_m = tl/12s 	$I = $ in/hr $t = $ hrs $s = $ $D_m = $ ft	
3. Trench Bottom Surface Area $A_{m} = V_{BMP} / D_{m}$	$A_{m} = \underline{\hspace{1cm}} ft^{2}$	
Notes:		

Design Procedure Form for Porou Designer: Company: Date: Project: Location:	us Pavement
 Determine Design Storage Volume (Use Worksheet 1) a. Total Tributary Area (maximum 10) b. Design Storage Volume, V_{BMP} 	A_{trib} = acres V_{BMP} = ft ³
1. Basin Surface Area a. Detention Volume V_{BMP} b. $A_m = V_{BMP} / (0.17 \text{ ft})$	$V_{BMP} = $ ft^3 $A_m = $ ft^2
2. Block Typea. Minimum open area = 40%b. Minimum thickness = 4 inches	Block Name = Manufacturer = % Open Area = % Thickness = inches
3. Base Coursea. ASTM C33 Sand Layer (1 inch)b. ASSHTO M43-No.8 Gravel Layer (9 inches)	Sand Layer (check) Gravel Layer (check)
Notes:	

D Co	esiç omp I Pro	gner: pany: Date: biject: ution:	and Filter	
1.	Wo a.	termine Design Storage Volume (Use orksheet 1) Total Tributary Area (maximum 100) Design Storage Volume, V _{BMP}	$A_{trib} = \underline{\hspace{1cm}} acres$ $V_{BMP} = \underline{\hspace{1cm}} ft^3$	
2.	Ва	aximum Water Height in Sedimentation sin* Invert elevation at connection to storm drain system.	Elev. Storm Drain =	ft
	b.	Sand Filter invert elevation (consider min. grade (1%) from storm drain). Point A, Figure 9.	Elev. Pt A =	ft
	c.	Estimate filter depth or use min. (3').	Filter Depth =	ft
	d.	Top elevation of filter bed. Point B, Figure 9.	Elev. Pt B =	ft
	e.	Surface elevation at BMP inlet. Point C, Figure 9.	Elev. Pt C =	ft
	f.	Determine max. allowable height (2h) of water in the sedimentation basin using the elevation difference between points C and B. (min. 2', max. 10') 2h = [(C-B) - 1' Freeboard]	2h =	ft
3.	a.	the Sedimentation Basin Find Sedimentation Basin Area, A_s $A_s = V_{BMP} / (2h)$ Determine basin length and width, using a length to width ratio $\ge 2:1$ $A_s = 2 \times W^2$ length = 2 x width	A _s = f width = ft length = ft	

4.	 Size Filter Basin a. Determine Filter Basin Area, A_f A_f = V_{BMP} / 18 b. Determine Filter Basin Volume V_f = A_f x filter depth (part 2c) c. Determine Required Volume, V_r V_r = 0.2 x V_{BMP} d. Check if V_r ≤ V_f If no, redesign with an increased filter depth or increase filter area. 	$A_{f} = $
No	tes:	

^{*} Based on these elevations, is there a sufficient elevation drop to allow gravity flow from the outlet of the control measure to the storm drain system? If no, investigate alternative on-site locations for treatment control, consider another treatment control measure more suitable for site conditions, or contact the District to discuss on-site pumping requirements.

De	sign Procedure Form for Dela	ware Sand Filter	
De	esigner:		_
Со	mpany:		_
	Date:		_
	Project: ocation:		_
L			_
1.	Determine Design Storage Volume (Use Worksheet 1) a. Total Tributary Area (maximum 100) b. Design Storage Volume, V _{BMP}	$A_{trib} = $ acr $V_{BMP} = $ ft ³	es
2.	Maximum Water Height in Sedimentation Basin*		
	a. Invert elevation at connection to storm drain system.	Elev. Storm Drain =	ft
	b. Sand Filter invert elevation		
	(consider min. grade (1%) from storm drain).	Elev. Filter Bottom =	ft
	c. Estimate filter depth or use min. (3').	Filter Depth =	ft
	d. Top elevation of filter bed.	Filter bed top elev. (pt B) =	ft
	e. Surface elevation at BMP inlet.f. Determine max. allowable height	BMP inlet Elev. (pt C) =	ft
	(2h) of water that can pond over the filter using the elevation	26	£4
	difference between the filter bed	2h =	ft
	top and the BMP inlet. 2h = [(C-B) – 1' Freeboard]		
3.	Minimum Surface Area of the Chambers		
	If 2h < 2.67 feet (2'-8")		
	$A_f = A_s = V_{BMP} / (4.1h + 0.9)$ If $2h > 2.67$ feet $(2'-8")$		
	$A_f = A_s = [V_{BMP} \times d_s] / [k(h+d_s)t_f]$		
	a. Sand bed depth, ds	d _s =	ft
	b. Filter Coefficient, k		ft/hr
	c. Draw-down time, t	t =	hr
	d. ½ max. allowable water depth	h =	ft
	over filter, h		

	e. Sediment Chamber Area A _s , and Filter Surface Area A _f	A_s and $A_f = $ ft ²
4.	Sediment Chamber and Filter Dimensions a. Select width $(W_s = W_f = 18" \text{ to } 30")$ b. Filter length $(L_s = L_f = A_{fm}/W_f)$ c. Adjusted length (rounded) d. Adjusted area $(A_s = A_f = W_f \times L_f)$	$W_s = W_f = $ ft $L_s = L_f = $ ft $A_s = A_f = $ ft t^2
5.	$\label{eq:System Storage Volume} System Storage in filter voids ($V_v = A_f$ x $	$V_{\text{V}} = \underline{\hspace{1cm}} \text{ft}^{3}$ $V_{\text{Q}} = \underline{\hspace{1cm}} \text{ft}^{3}$ $V_{\text{r}} = \underline{\hspace{1cm}} \text{ft}^{3}$ $V_{\text{a}} = \underline{\hspace{1cm}} \text{ft}^{3}$ $\text{Check } V_{\text{r}} \ge V_{\text{a}} \underline{\hspace{1cm}} \text{ft}^{3}$
No	tes:	

^{*} Based on these elevations, is there a sufficient elevation drop to allow gravity flow from the outlet of the control measure to the storm drain system? If no, investigate alternative on-site locations for treatment control, consider another treatment control measure more suitable for site conditions, or contact the District to discuss on-site pumping requirements.

ed Swale				
Project:				
Q _{BMP} =	cfs			
b =	ft			
z =				
s =	%			
v =	ft/s			
D =	ft			
L =	ft			
Grated Inlet' Infiltration Trench Underdrain Other				
	D = L = Grated Inlet' Infiltration Trench			

	Worksheet 10	
Design Procedure Form for Filt	er Strip	
Designer:		
Company:		
Date:		
Project:		
Location:		
Determine Design Flow (Use Worksheet 2)	Q _{BMP} = cfs	
2. Design Width $W_m = (Q_{BMP})/0.005 \text{ cfs/ft}$	W _m = ft	
3. Design Length (15 ft minimum)	L _m = ft	
4. Design Slope (4 % maximum)	S _D = %	
5. Flow Distribution (check type used or	Slotted curbing	
describe "other")	Modular Block Porous Pavement	
	Level Spreader	
	·	
	other	
6. Vegetation (describe)		
5. Outflow Collection (check type used	Grass Swale	
or describe "other")	Street Gutter	
,	Storm Drain	
	Underdrain	
	Other	
Notes:		

			1101110110111	
De	sign Procedure Form for Wate	r Quality Inlets		
D	esigner:			
	ompany:			
	Date:			
	Project:			
L	ocation:			
1.	Determine Design Flow Rate (Use Worksheet 2)	Q _{BMP} =	cfs	
2.	Water Quality Inlet			
	Manufacturer Name	Make		
	Model	Model		
	Flow Capacity of Model	Capacity	cfs	
	Please include a technical sheet from the manufacturer with information on this model.			
Notes:				
			_	
1				